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Convex order
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Stochastic order

Suppose you are a gambler, and there are two gambles, say, blackjack and
roulette. To get more money (or to lose less money in fact), which gamble
should you choose? Which one is better than the other?
Blackwell1 suggested a criterion to compare two different random variables:
called stochastic dominance.
Let X ∼ µ and Y ∼ ν with finite first moments. We say that Random
variable X has first-order stochastic dominance over random variable Y if
for any t ∈ R

P(X ≥ t) ≥ P(Y ≥ t)

and a strict inequality holds for some t. Equivalently, for any non
decreasing u : R → R,

Eu(X ) ≥ Eu(Y ).

1Blackwell, “Equivalent comparisons of experiments”.
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Stochastic order

FN(0,1)

FN(0.75, 1)

Figure: X ∼ N(0.75, 1) and Y ∼ N(0, 1): X dominates Y .
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Stochastic order

People in other areas, economics, finance, actuarial science, operation
research etc., in which decision making under uncertainty is of interest has
realized its importance and usefulness. (Davidson and Duclos2, Rothschild
and Stiglitz3, Linton, Post and Whang4)
More generally, one can define (a variant) stochastic order by choosing
different defining class. Let A be a defining class, i.e. a certain family of
functions: e.g. A = {non-decreasing} for first-order stochastic dominance.
We say that X dominates Y with A, and denoted by Y ⪯A X if for every
φ ∈ A,

Eφ(Y ) ≤ Eφ(X ).

See Belzunce, Martínez-Riquelme and Mulero5 for more details.

2Davidson and Duclos, “Statistical inference for stochastic dominance and for the
measurement of poverty and inequality”.

3Rothschild and Stiglitz, “Increasing risk: I. A definition”.
4Linton, Post, and Whang, “Testing for the stochastic dominance efficiency of a

given portfolio”.
5Belzunce, Martínez-Riquelme, and Mulero, An introduction to stochastic orders.
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Convex order

Convex order is a stochastic order with a defining class consisting of
convex functions. Formally, we say that µ, ν ∈ P(Rd) are in convex order,
or µ is dominated by ν in convex order, denoted by µ ⪯ ν, if for any
convex function φ,

Eµφ(X ) ≤ Eνφ(Y ).

Notice that if µ and ν are in convex order, by constant functions(+1 and
−1), they have the same mean.
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Convex order

It is known by Strassen6 that µ and ν are in convex order if and only if
there is a martingale coupling between them, i.e., there is a joint
distribution π ∈ P(Rd × Rd) such that whose marginals are µ and ν,
respectively and

E(X ,Y )∼π[Y |X ] = X

µ-almost everywhere.

6Strassen, “The existence of probability measures with given marginals”.
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Some Motivations
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Model-free option pricing in finance

Let us consider the problem of pricing forward start options at time 0. We
want to price a security payment p(X ,Y ) where X and Y are the forward
price vectors at time 1 and 2, respectively. Rather than assuming any
specific model, financial mathematicians want to know the call prices at 1
and 2 with no-arbitrage. No-arbitrage is equivalent to E[Y |X ] = X ,
martingale condition. Since knowing European call option prices (for the
continuum of strikes) is equivalent knowing the marginal distributions
under a risk-neutral measure7, without loss of generality we assume that
X ∼ µ and Y ∼ ν for some known µ and ν. The goal is to find a
martingale (no-arbitrage) coupling between µ and ν which solves

sup
E[Y |X ]=X

E [p(X ,Y )] .

7Breeden and Litzenberger, “Prices of state-contingent claims implicit in option
prices”.
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Model-free option pricing in finance

A risk-neutral martingale coupling is not observable but instead marginally
obtained via calibrations to option prices trading on the market. In reality,
the procedure can be hampered by practical reasons. Thus a good
extracting procedure should address these difficulties and importantly be
consistent across maturities, i.e. µ ⪯ ν. Clearly being able to statistically
test the convex order relationship between µ and ν would be useful for the
task of tuning an effective extracting procedure. Additionally, large
deviation from the expected convex order that µ ⪯ ν would imply
existence of arbitrage.
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Labor economics

The central question in labor economics is how workers are matched to
firms in such a way that productivity is maximized. A worker may possess
different or multidimensional skills, while a firm may be interested in only a
fraction of the various skills of a worker, but it can only hire the worker as
a whole, together with other less interested skills. The fact that a worker’s
skills are not decomposable has made the labor economics problem difficult
to solve.
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Labor economics

An idea8,9 is to mathematically unbundle a worker’s skills. The
ideal(unrealistic) situation in which a firm can access to all skill
components individually is an equilibrium. They show that at this
equilibrium firms’ wage distribution over employees is dominated in convex
order by the distribution of workers’ aggregated skills. In this context,
testing of convex order between wage distribution and distribution of
aggregated skills can be leveraged to test whether a labor market is at an
equilibrium, and would clearly be valuable to government service when
policies are being made.

8Choné, Kramarz, et al., Matching Workers’ Skills and Firms’ Technologies: From
Bundling to Unbundling.

9Nordström Skans, Choné, and Kramarz, When workers’ skills become unbundled:
Some empirical consequences for sorting and wages.
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Main goal

The goal of this talk is How do we statistically and quantitatively test the
convex order relation between two distributions, in an effective way?
Formally, we solve the following hypothesis problem:

H0 : µ ⪯ ν vs HA : µ ⪯̸ ν. (1)
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Easy or hard?

If µ ⪯̸ ν, supφ∈A
{´

Rd φdµ−
´
Rd φdν

}
= ∞. Let µn and νn be empirical

measures of µ and ν, respectively.

Tn := sup
φ∈A

{ˆ
φdµn −

ˆ
φdνn

}
.

On R2, µ = δ(0,0) and ν = 1
2δ(−1,0) +

1
2δ(1,0). It is easy check that µ ⪯ ν.

Also
νn :=

1
2
δ(−1,0) +

1
2
δ(1, 1

n )
−→ ν weakly as n → ∞.

Clearly µ ⪯̸ νn for all n ≥ 1. In fact, taking the set of convex functions
which are zero on the line connecting (−1, 0) and

(
1, 1

n

)
, and arbitrarily

large at (0, 0) yields Tn = ∞.
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Martingale optimal transport
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Weak optimal transport

Gozlan, Roberto, Samson and Tetali10 extends the classical optimal
transport to the weak optimal transport. For π ∈ Π(µ, ν), one can rewrite

π(dxdy) = px(dy)µ(dx)

where px(dy) = p(dy |x) be the probability kernel. Let
θ : Rd × P(Rd) → [0,∞]. The weak optimal transport cost Tθ(ν|µ) is
defined as

Tθ(ν|µ) := inf
π∈Π(µ,ν)

ˆ
θ(x , px)µ(dx).

If θ(x , px) =
´
c(x , y)px(dy), then Tθ(ν|µ) recovers the usual optimal

transport.

10Gozlan et al., “Kantorovich duality for general transport costs and applications”.
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Martingale optimal transport

The martingale optimal transport problem is a variant of the weak optimal
transport, which emerges from mathematics finance11,12.
M(µ, ν) ⊂ Π(µ, ν) is the subset of couplings satisfying E[Y |X ] = X µ-a.e
whenever (X ,Y ) ∼ π ∈ M(µ, ν), i.e., the coupling π generates a
martingale between µ and ν. The martingale optimal transport problem is
defined as

min
π∈M(µ,ν)

ˆ
Rd×Rd

c(x , y)π(dx , dy).

Recall that M(µ, ν) is non-empty if and only if µ ⪯ ν13.

11Hobson and Neuberger, “Robust bounds for forward start options”.
12Beiglböck, Henry-Labordere, and Penkner, “Model-independent bounds for option

prices—a mass transport approach”.
13Strassen, “The Existence of Probability Measures with Given Marginals”.
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Relation

If one chooses

θ(x , px) =

{´
c(x , y)px(dy) if

´
ypx(dy) = x ,

∞ otherwise,

then, the weak OT recovers the martingale OT.
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Wasserstein projection
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Convex order cone

Let

θ(x , px) =

(ˆ
ypx(dy)− x

)2

,

and consider

T2(ν|µ) := inf
π∈Π(µ,ν)

ˆ (ˆ
ypx(dy)− x

)2

µ(dx).

Notice that T2(ν|µ) = 0 if and only if µ ⪯ ν if and only if there is a
martingale coupling between µ and ν.
Any connection to the classical OT?
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Convex order cone

For µ, ν ∈ P2(Rd), Pcx
⪯ν and Pcx

µ⪯ are backward and forward convex
order cones defined as

Pcx
⪯ν :=

{
ξ ∈ P2(Rd) : ξ ⪯ ν

}
, Pcx

µ⪯ :=
{
η ∈ P2(Rd) : ν ⪯ η

}
.

Kim and Ruan14 discuss geodescially convexity of Pcx
⪯ν and Pcx

µ⪯: only
backward convex cone is geodescially convex.

14Kim and Ruan, “Backward and forward Wasserstein projections in stochastic order”.
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Wasserstein projection

Define projections onto Pcx
⪯ν and Pcx

µ⪯ with respect to W2 distance:

W2
(
µ,Pcx

⪯ν

)
:= inf

ξ∈Pcx
⪯ν

W2 (µ, ξ) , W2
(
Pcx

µ⪯, ν
)
:= inf

η∈Pcx
µ⪯

W2 (η, ν) .

Theorem

(Gozlan and Juilleta) For any µ, ν ∈ P2(Rd),

T2(ν|µ) = W2
2
(
µ,Pcx

⪯ν

)
.

aGozlan and Juillet, “On a mixture of Brenier and Strassen theorems”.

Hence, W2
(
µ,Pcx

⪯ν

)
= 0 if and only if µ ⪯ ν.
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Main questions

Recall the hypothesis problem:

H0 : µ ⪯ ν vs HA : µ ⪯̸ ν.

Then, under H0 : µ ⪯ ν we have W2
(
µ,Pcx

⪯ν

)
= 0.

Let µn =
∑ 1

nδXi and νm =
∑ 1

nδYi be empirical distributions of µ and ν,
respectively. Our test statistics is W2

(
µn,Pcx

⪯νm

)
, and the decision rule for

(1) is

Reject H0 if W2(µn,P
cx
⪯νm

) ≥ t(α); Accept otherwise, (2)

Is it really good enough for the hypothesis problem? If so, how can we
compute it?
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Stability of Wasserstein projection
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Stability of Wasserstein projection

In order to be a good estimator, it should be consistent: as n,m → ∞,

W2
(
µn,P

cx
⪯νm

)
→ W2

(
µ,Pcx

⪯ν

)
.

In mathematical language, it should be stable.
In fact, Brückerhoff and Juillet15 prove the instability of the martingale
optimal transport problem in dimension d ≥ 2.
But, we require the weakest stability: stability of the optimal value.

15Brückerhoff and Juillet, “Instability of martingale optimal transport in dimension
d ≥ 2”.
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Preliminaries

Theorem

(Kim and Ruana) For any µ, ν ∈ P2(Rd), it holds that

W2
(
µ,Pcx

⪯ν

)
= W2

(
Pcx

µ⪯, ν
)
. (3)

aKim and Ruan, “Backward and forward Wasserstein projections in stochastic order”.

Surprisingly helpful to prove the stability of W2
(
µ,Pcx

⪯ν

)
.
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Proof of Stability

Lemma

For any µ, ν, ξ ∈ P2
(
Rd

)
, it holds for Wasserstein backward projection

that, ∣∣W2
(
µ,Pcx

⪯ν

)
−W2

(
ξ,Pcx

⪯ν

)∣∣ ≤ W2 (µ, ξ) . (4)

Proof.
If x , y ∈ X a metric space, and C ⊂ X then the metric distance should
satisfy |d(x ,C )− d(y ,C )| ≤ d(x , y); to see this notice

d(x ,C ) ≤ d(x , y) + d(y ,C ),

d(y ,C ) ≤ d(x , y) + d(x ,C ).
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Proof of Stability

Lemma

For any µ, ν, ξ ∈ P2
(
Rd

)
, it holds for Wasserstein backward projection

that, ∣∣W2
(
µ,Pcx

⪯ν

)
−W2

(
µ,Pcx

⪯ξ

)∣∣ ≤ W2 (ν, ξ) . (5)

Proof.

W2
(
µ,Pcx

⪯ν

)
= W2

(
Pcx

µ⪯, ν
)

by (3)

≤ W2
(
Pcx

µ⪯, ξ
)
+W2 (ξ, ν) by (4)

= W2
(
µ,Pcx

⪯ξ

)
+W2 (ξ, ν) by (3).

Similarly,
W2

(
µ,Pcx

⪯ξ

)
≤ W2

(
µ,Pcx

⪯ν

)
+W2 (ν, ξ) .
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Proof of Stability

Theorem (Quantitative stability)

For any probability measures µ, µ′ and ν, ν′,∣∣W2
(
µ′,Pcx

⪯ν′

)
−W2

(
µ,Pcx

⪯ν

)∣∣ ≤ W2 (µ, µ
′) +W2 (ν, ν

′) . (6)

Proof.
Observe that∣∣W2

(
µ′,Pcx

⪯ν′

)
−W2

(
µ,Pcx

⪯ν

)∣∣
≤

∣∣W2
(
µ′,Pcx

⪯ν′

)
−W2

(
µ,Pcx

⪯ν′

)
+W2

(
µ,Pcx

⪯ν′

)
−W2

(
µ,Pcx

⪯ν

)∣∣
≤

∣∣W2
(
µ′,Pcx

⪯ν′

)
−W2

(
µ,Pcx

⪯ν′

)∣∣+ ∣∣W2
(
µ,Pcx

⪯ν′

)
−W2

(
µ,Pcx

⪯ν

)∣∣ .
Applying (4) and (5) for the first term and the second term in the above
last line, respectively, the conclusion follows.
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Consistency

Corollary (Consistency of W2
(
µn,Pcx

⪯νm

)
)

Let µn and νm be empirical distributions drawn from µ and ν, respectively.
Then,∣∣W2

(
µn,P

cx
⪯νm

)
−W2

(
µ,Pcx

⪯ν

)∣∣ ≤ W2 (µ, µn) +W2 (ν, νm) . (7)

So, our estimator converges to the true one.
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Converegence rate

The convergence rate of W2
(
µn,Pcx

⪯νm

)
can be derived by combining

with many recent progresses of the convergence rate of empirical
distributions under some mild assumptions (we leverage Fournier and
Guillin16, Weed and Bach17 and Lei18).

16Fournier and Guillin, “On the rate of convergence in Wasserstein distance of the
empirical measure”.

17Weed and Bach, “Sharp asymptotic and finite-sample rates of convergence of
empirical measures in Wasserstein distance”.

18Lei, “Convergence and concentration of empirical measures under Wasserstein
distance in unbounded functional spaces”.
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Converegence rate

Theorem (Convergence rate of W2
(
µn,Pcx

⪯νm

)
)

(i) Assume that µ and ν satisfy the log-Sobolev inequality with a constant
κ > 0. Then, for all sufficiently large n,m,∣∣W2

(
µn,P

cx
⪯νm

)
−W2(µ,P

cx
⪯ν)

∣∣ ≤ O
(
(n ∧m)−(

1
d ∧

1
4 )(log(n ∧m))

1
21d=4

)
with probability 1 − 2 exp

(
−

√
n∧m
2κ

)
.

(ii) Assume that µ and ν have bounded supports with diameter at most D.
Let d∗

p (µ) be the Wasserstein dimension of µ. If k > d∗
2 (µ) ∨ d∗

2 (ν) ∨ 4,
then for all sufficiently large n,m,∣∣W2

(
µn,P

cx
⪯νm

)
−W2(µ,P

cx
⪯ν)

∣∣ ≤ O
(
(n ∧m)−

1
k

)
with probability 1 − 2 exp

(
−2

√
n∧m

D4

)
.
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Computation scheme
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How to compute

A next question is how to compute W2
(
µn,Pcx

⪯νm

)
. For this purpose, we

need the following important theorem.

Theorem

(Gozlan and Juilleta, Kim and Ruanb) For any µ, ν ∈ P2(Rd), there exists
a unique (backward) projection of µ, denoted by µ, onto Pcx

⪯ν .
Furthermore,

µ = (∇φ)#µ, (8)

where φ is a proper lower semicontinuous convex function such that
D2φ ≤ Id .

aGozlan and Juillet, “On a mixture of Brenier and Strassen theorems”.
bKim and Ruan, “Backward and forward Wasserstein projections in stochastic order”.

This is very similar to Breinier’s theorem: but it does not require the
absolute continuity.
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Simple case

Theorem

(Gozlan and Juilleta) Let {y1, . . . , yk} for k ≤ d be the set of vertices of a
simplex and νk be an atomic measure supported on it. Denote ∆ as the
convex hull of {y1, . . . , yk}. Then, for any µ ∈ P2(Rd), there is v ∈ Rd

such that the map T : Rd → Rd defined by

T (x) = proj∆(x + v)

is such that µ = (T#)(µ).

aGozlan and Juillet, “On a mixture of Brenier and Strassen theorems”.

The idea is to use martingale property: since µ ⪯ ν, the mean(barycenter)
should be equal. Also, spt(µ) ⊆ ∆. In fact, the barycenter and the
geometry of spt(µ)(lying in the convex hull of spt(νm)) almost determine
µ.
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Finite case

For an arbitrary finite set, the argument is insufficient. Consider
µ = 1

2δe1 +
1
2δ−e1 and ν = 1

2δe2 +
1
2δ−e2 for the standard basis vectors

e1, e2 of R2. These µ, ν have the same barycenter, but, there is no convex
order between them.
It is because of the mass transport constraint: there are different extreme
points of given convex hull having the same barycenter. We should use all
points to write the barycenter, i.e., each point of spt(νm) should receive
some mass from µ.

PIMS Kantotrovich Initiative, UBC Statistical inference of convex order



Finite case

Lemma

For m ∈ N, let ∆m be the m-simplex. Assume that νm is a distribution
over m-points, {y1, . . . , ym}. Let T : ∆m −→ conv(spt(νm)) such that
T (α) =

∑m
j=1 αjyj for each α := (α1, . . . , αm)

T ∈ ∆m. Then,

Pcx
⪯νm

=

{
(T )#(ω) : ω ∈ P(∆m) s.t.

ˆ
∆m

αjdω(α) = νm(yj)

}
.
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Computing scheme

Theorem

For each xi ∈ spt(µn) we write α(xi ) := (α1(xi ), . . . , αm(xi ))
T . Consider

the following constrained minimization problem:

min
{α(x1),...,α(xn)}

n∑
i=1

µn(xi )

 m∑
j=1

αj(xi )yj − xi

2

s.t. α(xi ) ∈ ∆m,

n∑
i=1

αj(xi )µn(xi ) = νm(yj).

Then, there exists a unique minimizer {α∗(x1), . . . ,α
∗(xn)} which is the

projection of µn onto Pcx
⪯νm

, denoted by µn, given in this way: for any
measurable E ⊆ conv(spt(νm)),

µn(E ) =
n∑

i=1

µn(xi )1E

 m∑
j=1

α∗
j (xi )yj

 .
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Computing scheme

Let xi = (xi1, · · · , xid), yj = (yj1, · · · , yjd) and

A =

 α1(x1) . . . αm(x1)
...

. . .
...

α1(xn) . . . αm(xm)

 , Y =

 y11 . . . y1d
...

. . .
...

ym1 . . . ymd


X =

 x11 . . . x1d
...

. . .
...

xn1 . . . xnd

 , µn =

 µn(x1)
...

µn(xn)

 , νm =

 νm(y1)
...

νm(ym)

 .

It can be written as

min
A

trace
(
(AY − X)Tdiag(µn)(AY − X)

)
s.t. ATµn = νn, A1m = 1n, A ≥ 0.
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Experiment
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H0 case

On R2, let N(0, I2) be the standard Gaussian distribution. Consider
µ = Unif [0, 1]2 and ν = Unif [0, 1]2 ∗N(0, I2). µ ⪯ ν since for X ∼ µ and
Y ∼ ν, the martingale condition Eπ[Y |X ] = X is achieved by
π(y |x) = N(x , I2), the isotropic Gaussian with mean x . Let µn and νn be
the empirical distributions of µ and ν with independent n-samples,
respectively. Also, both have the uniform weight over samples. In this
experiment, we use CVXPY python code developed by Diamond and
Boyd19 and Agrawal et al.20.

19Diamond and Boyd, “CVXPY: A Python-embedded modeling language for convex
optimization”.

20Agrawal et al., “A rewriting system for convex optimization problems”.
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H0 case
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H0 case
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Figure: The geometry of Wasserstein projection.
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Entropic Frank-Wolfe Algorithm

Let
min

π∈Rn×Rn

π1=1,πT 1=1

J (π) ≜
1
n
∥πY − X∥2

F .

Taking the gradient descent type algorithm:

min
π∈E

∇J (πk)⊙ π,

where ⊙ is the Hadamard product (the element-wise product) of matrices,

∇J (πk) = ∇π

(
1
n
∥πY − X∥2

F

)∣∣∣∣
πk

=
2
n
(πkY − X)YT

and
E =

{
π ∈ Rn × Rn : π1 = 1,πT1 = 1

}
.
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Entropic Frank-Wolfe Algorithm

Consider
min
γ∈E

{∇J (πk)⊙ γ + εkKL (γ |1⊗1 )} .

εk satisfies εk → 0 as k → ∞. Note if we set εk = 0, then we see that the
entropic version recovers the previous one.
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HA case

Consider two dimensional distributions

µ ∼ N

((
0
0

)
,

(
2 −2
−2 3

))
, ν ∼ N

((
1
1

)
,

(
3 −2
−2 4

))
.

Clearly µ ⪯̸ ν. Now 104 samples are drawn respectively from µ and ν. The
empirical measures are written as µn and νn. We start the entropic
Frank-Wolfe algorithm with initial π0 being a 104 × 104 matrix with each
row equal to (

10−4, ..., 10−4) ∈ R104
.

This corresponds to a Dirac measure on the cone Pcx
⪯νn

concentrating on
the barycenter of νn. In around 10 iterations, the algorithm reaches a
minimal value close to 2 and stabilizes in further iterations, which indicates
µn is not in the cone Pcx

⪯νn
. Figure 4 shows some snapshots of the

evolution of the probability along the cone.
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Entropic Frank-Wolfe Algorithm

Figure: Left-most: the initial distribution concentrating on the barycenter of νn.
Right-most: the empirical distribution νn. Middle: slices of the gradient flow
along the convex order cone Pcx

⪯νn (from left to right) generated by the entropic
Frank-Wolfe algorithm.
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Conclusions and future works
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Conclusions

In this work
A new test statistic for the hypothesis problem of convex order
The stability of the projected Wasserstein distance, and as a
byproduct of it the consistency of the test statistic
The rate of convergence under mild assumptions
Computation scheme and algorithm
Experiment with synthetic data
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Future works

Other stochastic order?
Sharpen the theory: e.g. central limit theorem
Boosting the rate of convegence by entorpic optimal transport
Faster algorithm
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Thank you for your attention!
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