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Random matrix with i.i.d. entries given margins

▶ (Base model) µ = probability measure on R, and let

A := inf{supp(µ)} ≤ sup{supp(µ)} =: B.

X ∼ µ⊗(m×n): (m× n) random matrix with i.i.d. entries drawn from µ

▶ (Margins) For a matrix x = (xij) ∈ Rm×n, (r(x), c(x)) = margin of x:

r(x) := (r1(x), . . . , rm(x)); ri(x) := xi1 + · · ·+ xin (▷ row margin of x)
c(x) = (c1(x), . . . , cn(x)); cj(x) := x1j + · · ·+ xmj (▷ column margin of x)

For each ρ ≥ 0, let

Tρ(r, c) :=
{

x ∈ Rm×n : ∥r(x)− r∥1 ≤ ρ, ∥c(x)− c∥1 ≤ ρ
}

(T (r, c) := T0(r, c))

▶ (Main question) For ρ ‘small’,

If we condition X ∼ µ⊗(m×n) on being in Tρ(r, c), how does it look like?

• This question still makes sense if µ is not a probability measure (i.e., counting
measure on N), as long as the measure of Tρ(r, c) under µ⊗(m×n) is in (0,∞)
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Random matrix with i.i.d. entries given margins

▶ (Main question)

If we condition X ∼ µ⊗(m×n) on being in Tρ(r, c), how does it look like?

▶ High-level answer

• (Minimum Relative Entropy Perspective): The expectation of the minimum
relative entropy random matrix from the base model constrained to have
expected margin (r, c)

• (Maximum Liklihood Perspective): The expectation of the maximum likelihood
entrywise exponential tilting of the base model for margin (r, c)
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Exponential tilting

▶ µθ := exponentially tilted probability measure given by

dµθ
dµ (x) = eθx−ψ(θ), ψ(θ) := log

∫
R

eθxdµ(x) = partition function

• Set of all allowed tilting parameters:

Θ :=
{
θ ∈ R :

∫
R

eθxdµ(x) <∞
}
= Nonempty interval

▶ Elementary facts: For θ ∈ Θ◦,

EX∼µθ [X] = ψ′(θ), VarX∼µθ (X) = ψ′′(θ) > 0.

• ψ′ : Θ◦ → (A,B) is strictly increasing (▷ tilt2mean function)
• ϕ = (ψ′)−1 : (A,B)→ Θ◦ is strictly increasing (▷ mean2tilt function)

▶ For θ ∈ Θ◦, the relative entropy from the base mesure µ to the tilted probability
measure µθ is

D(µθ∥µ) :=
∫

x∈R
log

(
dµθ
dµ (x)

)
dµθ(x) = θψ′(θ)− ψ(θ).
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Typical table

▶ Fix margins r = (r1, . . . , rm) ∈ Rm, c = (c1, . . . , cn) ∈ Rn. The typical table Z for
margin (r, c) is

Z r,c := argmin
X∈T (r,c)∩(A,B)m×n

∑
i,j

D(µϕ(xij) ∥µ)︸ ︷︷ ︸
D(µϕ(x) ∥µ)=xϕ(x)−ψ(ϕ(x))

• g = strictly concave since f′(x) = −ϕ(x), f′′(x) = −ϕ′(x) = −1
Var(µϕ(x))

< 0
• So the typical table Z r,c is unique if it exists

▶ By multivariate Lagrange multipliers, there are ‘dual variables’ α ∈ Rm, β ∈ Rn s.t.

Z r,c
ij = ψ′(α(i) + β(j)) for all i, j.
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Concentration of a random matrix with i.i.d. entries given margins

▶ (Informal result I)

X ∼ µ⊗(m×n) conditioned on being in Tρ(r, c) concentrates around Z r,c,
where Z r,c

ij = ψ′(α(i) + β(j)) for some α ∈ Rm,β ∈ Rn

▶ (Informal result II)[
X ∼ µ⊗(m×n) conditioned on being in Tρ(r, c)

]
≈ Y,

where Y has independent entries Yij ∼ µα(i)+β(j) and E[Y] = Z r,c
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Limit of a random matrix with i.i.d. entries given margins

▶ A continuum margin (r, c) = integrable functions r, c : [0, 1]→ R such that∫ 1
0 r(x) dx =

∫ 1
0 c(y) dy

▶ For a vector x ∈ Rm, denote x̄ = the corresponding step function [0, 1]→ R,

x̄(t) :=
m∑

i=1
x(i)1

(
(i− 1)/m < t ≤ i/m

)
.

▶ For A ∈ Rm×n, WA := corresponding step kernel on unit square:

WA(x, y) := Aij if (x, y) ∈
( i− 1

m ,
i

m
]
×
( j− 1

n ,
j
n
]

▶ A seq. of m× n margins (rm, cn) converges in L1 to a continuum margin (r, c) if

lim
m,n→∞

∥r− n−1r̄m∥1 + ∥c−m−1c̄n∥1 = 0.

▶ (Informal result III)

For (rm, rn)→ (r, c) in L1 and X ∼ µ⊗(m×n) conditioned on X ∈ Tρ(rm, cn),
WX →W r,c w.h.p. in ‘cut norm’

where W r,c(x, y) = ψ′(α(x) + β(y)) for some α,β ∈ [0, 1]→ R

Hanbaek Lyu Large random matrices with given margins



Limit of a random matrix with i.i.d. entries given margins

▶ A continuum margin (r, c) = integrable functions r, c : [0, 1]→ R such that∫ 1
0 r(x) dx =

∫ 1
0 c(y) dy

▶ For a vector x ∈ Rm, denote x̄ = the corresponding step function [0, 1]→ R,

x̄(t) :=
m∑

i=1
x(i)1

(
(i− 1)/m < t ≤ i/m

)
.

▶ For A ∈ Rm×n, WA := corresponding step kernel on unit square:

WA(x, y) := Aij if (x, y) ∈
( i− 1

m ,
i

m
]
×
( j− 1

n ,
j
n
]

▶ A seq. of m× n margins (rm, cn) converges in L1 to a continuum margin (r, c) if

lim
m,n→∞

∥r− n−1r̄m∥1 + ∥c−m−1c̄n∥1 = 0.

▶ (Informal result III)

For (rm, rn)→ (r, c) in L1 and X ∼ µ⊗(m×n) conditioned on X ∈ Tρ(rm, cn),
WX →W r,c w.h.p. in ‘cut norm’

where W r,c(x, y) = ψ′(α(x) + β(y)) for some α,β ∈ [0, 1]→ R

Hanbaek Lyu Large random matrices with given margins



Limit of a random matrix with i.i.d. entries given margins

▶ A continuum margin (r, c) = integrable functions r, c : [0, 1]→ R such that∫ 1
0 r(x) dx =

∫ 1
0 c(y) dy

▶ For a vector x ∈ Rm, denote x̄ = the corresponding step function [0, 1]→ R,

x̄(t) :=
m∑

i=1
x(i)1

(
(i− 1)/m < t ≤ i/m

)
.

▶ For A ∈ Rm×n, WA := corresponding step kernel on unit square:

WA(x, y) := Aij if (x, y) ∈
( i− 1

m ,
i

m
]
×
( j− 1

n ,
j
n
]

▶ A seq. of m× n margins (rm, cn) converges in L1 to a continuum margin (r, c) if

lim
m,n→∞

∥r− n−1r̄m∥1 + ∥c−m−1c̄n∥1 = 0.

▶ (Informal result III)

For (rm, rn)→ (r, c) in L1 and X ∼ µ⊗(m×n) conditioned on X ∈ Tρ(rm, cn),
WX →W r,c w.h.p. in ‘cut norm’

where W r,c(x, y) = ψ′(α(x) + β(y)) for some α,β ∈ [0, 1]→ R

Hanbaek Lyu Large random matrices with given margins



Limit of a random matrix with i.i.d. entries given margins

▶ A continuum margin (r, c) = integrable functions r, c : [0, 1]→ R such that∫ 1
0 r(x) dx =

∫ 1
0 c(y) dy

▶ For a vector x ∈ Rm, denote x̄ = the corresponding step function [0, 1]→ R,

x̄(t) :=
m∑

i=1
x(i)1

(
(i− 1)/m < t ≤ i/m

)
.

▶ For A ∈ Rm×n, WA := corresponding step kernel on unit square:

WA(x, y) := Aij if (x, y) ∈
( i− 1

m ,
i

m
]
×
( j− 1

n ,
j
n
]

▶ A seq. of m× n margins (rm, cn) converges in L1 to a continuum margin (r, c) if

lim
m,n→∞

∥r− n−1r̄m∥1 + ∥c−m−1c̄n∥1 = 0.

▶ (Informal result III)

For (rm, rn)→ (r, c) in L1 and X ∼ µ⊗(m×n) conditioned on X ∈ Tρ(rm, cn),
WX →W r,c w.h.p. in ‘cut norm’

where W r,c(x, y) = ψ′(α(x) + β(y)) for some α,β ∈ [0, 1]→ R

Hanbaek Lyu Large random matrices with given margins



Limit of a random matrix with i.i.d. entries given margins

▶ A continuum margin (r, c) = integrable functions r, c : [0, 1]→ R such that∫ 1
0 r(x) dx =

∫ 1
0 c(y) dy

▶ For a vector x ∈ Rm, denote x̄ = the corresponding step function [0, 1]→ R,

x̄(t) :=
m∑

i=1
x(i)1

(
(i− 1)/m < t ≤ i/m

)
.

▶ For A ∈ Rm×n, WA := corresponding step kernel on unit square:

WA(x, y) := Aij if (x, y) ∈
( i− 1

m ,
i

m
]
×
( j− 1

n ,
j
n
]

▶ A seq. of m× n margins (rm, cn) converges in L1 to a continuum margin (r, c) if

lim
m,n→∞

∥r− n−1r̄m∥1 + ∥c−m−1c̄n∥1 = 0.

▶ (Informal result III)

For (rm, rn)→ (r, c) in L1 and X ∼ µ⊗(m×n) conditioned on X ∈ Tρ(rm, cn),
WX →W r,c w.h.p. in ‘cut norm’

where W r,c(x, y) = ψ′(α(x) + β(y)) for some α,β ∈ [0, 1]→ R
Hanbaek Lyu Large random matrices with given margins



Plan of the talk

1. Connection to Entropy minimization and Schrödinger bridge

2. Connection to Random graphs with given degree sequence

3. Connection to Contingency tables and Phase transition

4. Key ideas and Formal statement of results

5. Open problems
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Relative entropy minimization given expected margins

▶ (Base model) Reference probability measure R on Rm×n for m× n random matrices

▶ (Relative entropy) For each probability measure H on Rm×n, the relative entropy of
H from R is

DKL(H∥R) :=


∫

x∈Rm×n log
(

dH(x)
dR(x)

)
dH(x)
dR(x) R(dx) if H ≪ R

∞ otherwise.

▶ Find the least-action distribution H that minimizes the relative entropy from R
constrained on the expected margins being (r, c):

min
H∈Pm×n

DKL(H∥R) subject to EX∼H[(r(X), c(X))] = (r, c)

where Pm×n = the set of all probability measures on Rm×n

• Analogous to maximum entropy probability distributions given moments
• e.g., Exp(λ) = argmin

H∈P(R)
DKL(H | Leb(R≥0)) s.t.E[H] = λ

= argmax
h
−
∫
R

h(x) log h(x) dx s.t.
∫
R

x h(x) dx = λ
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Relative entropy minimization given expected margins

▶ (∗) min
H∈Pm×n

DKL(H∥R) subject to EX∼H[(r(X), c(X))] = (r, c).

▶ Specializing to R = µ⊗(m×n), the optimal measure Hopt is the product of some
entrywise exponential tilting µθij : Hopt =

⊗
i,j µθi,j .

• Convert to an OPT problem in h = dH
dR

• Then the corresponding Lagrangian is

L(h) =
∫
Rm×n

h(x) log (h(x)) R(dx) + λ

(∫
Rm×n

h(x) dR(x)− 1
)

+
m∑

i=1
αi

 n∑
j=1

∫
Rm×n

xijh(x) dR(x)− r(i)

+
n∑

j=1
βj

( m∑
i=1

∫
Rm×n

xijh(x) dR(x)− c(j)
)

• Suppose the sol. of (∗) is attained in the interior. Then δL
δh = 0, so

log hopt(x) + 1 + λ+ xijαi + xijβj = 0 for all i, j R-a.s. ,

log hopt(x) ∝
∑

ij
(αi + βj,)xij R-a.s.
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Relative entropy minimization given expected margins

▶ Specializing to R = µ⊗(m×n), the optimal measure H is a product of entrywise
exponential tilting µθij :

Hopt =
⊗

i,j
µθi,j

▶ Parameterize entrywise exponential tilting by the mean matrix Z = (zij):

Hopt =
⊗

i,j
µϕ(zij)

▶ Therefore the relative entropy minimization problem

min
H∈Pm×n

DKL(H∥R) subject to EX∼H[(r(X), c(X))] = (r, c).

reduces to

min
Z∈T (r,c)

DKL

(⊗
i,j
µϕ(zij)

∥∥∥∥ ⊗
i,j
µ

)
︸ ︷︷ ︸

=
∑

i,j D(µϕ(zij) ∥µ)

(▷ Typical table problem!)
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Static Schrödinger bridge

▶ Specialze to (m× n) = (1× 2), 2-dim random vector X = (X1,X2) ∼ R. Constrain
the marginal distributions, not the expected (row/column) margin:

min
H∈P1×2

DKL(H∥R) subject to X1 =d µ1, X2 =d µ2 where (X1,X2) ∼ H.

▶ In a more familar form,

min
H∈Π(µ1,µ2)

DKL(H∥R)

The optimal H from above is the static Schrodinger bridge between µ1 and µ2
w.r.t. R

▶ Specialize to R = µ1 ⊗ µ2. Then ∃α1,α2 : R→ R, the Shrödinger potentials
[14], characterizing the Shrödinger bridge as

dH
dR (x, y) = eα1(x)+α2(y) R-a.s.

(Lagrange multiplier for the marginal distribution constraint Xi =d µi)

• Typical table ← joint exponential tilting (from the first-moment condition),
• Schrödinger bridge ← reweighting (from entrywise distributional constraint).
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Random graphs with given degree sequences

▶ d = (d1, d2, . . . , dn): degree sequence of an n-node graph

▶ (Question)

How does a uniformly random graph with degree sequence d look like?

Figure: Random 3-regular graphs generated by the configuration model (allowing loops)
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Limit of random graphs with given degree sequences

▶ (dn)n≥1: dense degree sequence with scaling limit to c : [0, 1]→ (c1, c2) ⊆ (0, 1)

▶ Chaterjee, Diaconis, Sly ’11 [6]

• Assume c satisfies the ‘continuum Erdős-Gallai condition’∫ 1

x
c(y) ∧ x dy + x2 −

∫ x

0
c(y) dy > 0

• Then there exists a limiting ‘continuum dual variable ’ β∗ : [0, 1]→ R such that
the corresponding graphon

Wβ∗
(x, y) = 1

1 + exp(β∗(x) + β∗(y))

has ‘degree sequence’ c: ∫
R

Wβ∗
(x, y) dy = c(x)

• An = Adj mx of the uniformly random graph with degree seq. dn. Then

WAn →Wβ∗
in weak cut distance,

(WAn : step function corresponding to the adj mx An)
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Key idea in CDS ’11 [6]

▶ Fit a parametrized random graph model with independent edges (s.t. deg seq =
sufficient statistic) to the target degree sequence by MLE

• (The β-model) Given a dual variable β : Rn, Gβ =random graph with n nodes
and independent edges, where

Pβ(i ∼ j) ∝ exp(β(i) + β(j))
= exponetial tilting of Uniform({0, 1}) by β(i) + β(j)

Expected adjacency matrix:

E[Aβ(i, j)] := eβ(i)+β(j)

1 + eβ(i)+β(j)= ψ′(β(i) + β(j)),

• (log-likelihood)

ℓ(β) =
∑

i,j
xij(β(i) + β(j))− ψ(β(i) + β(j)) = 2

∑
i

diβ(i)−
∑

i,j
ψ(β(i) + β(j))

• (The MLE equation) dℓ(β)
dβ = 0 ⇐⇒ E[degree seq.] = d:

E

 n∑
j=1

Aβ(i, j)

 = di for all 1 ≤ i ≤ n
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Key idea in CDS ’11 [6]

▶ Sketch of proof:

• Find MLE βn for the β-model to the target degree sequence dn

• Show that the MLEs βn converge (after scaling) to some β∗ : [0, 1]→ R in L1

• Show that the expected adjacency matrices of the ML β-model converges to the
limiting graphon:

WE[Aβn
] →Wβ∗

• Show that the βn-model concentrates around its mean (in weak cut distance)

WAβn ≈WE[Aβn ]

• Show that the βn-model the target deg. seq. dn with prob. ≥ exp(−o(n2/3+ε))

• Putting things together:

WAβn
weak cut
≈ WE[Aβn

] = Wβ∗
+ o(1)
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Uniform contingency tables in statistics

▶ Contingency tables = matrices with non-netative integer entries with fixed row an
column margins 

  

3 5 3 0 3 5 

13 

10 

15 

16 

14 

19 

9 13 9 19 11 21 

1 0 3 2 0 7 

0 3 4 0 2 1 

0 0 1 2 5 7 

9 3 1 3 0 0 

2 0 8 1 3 0 

13 

10 

15 

16 

14 

19 

9 13 9 19 11 21 

𝑋 = ൫𝑋௜௝൯ 𝑣. 𝑠. 

Data Null model 

▶ Contingency tables are fundamental tools in statistics for studying dependence
structure between two or more variables

▶ Uniform contingency table X = (Xij) serves as the maximum entropy null model
given margins

Hanbaek Lyu Large random matrices with given margins
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Uniform and smooth margins

▶ Uniform margins: a = b = (⌊Cn⌋, ⌊Cn⌋, · · · , ⌊Cn⌋) ∈ Nn.

• Sharp volume estimate (Canfield and MacKay ’10 [4]):

logT(a, b) = [(1 + C) log(1 + C)− C log(C)]n2 − n log n
− n log 2πC(1 + C) + log n + O(1).

• Convergence to geometric RVs of mean C (Chatterjee, Diaconis, and Sly ’10
[5]):

dTV(Xij,Geom(C))→ 0 as n→∞

Asymptotically independent entries

 

  
!

𝐵!(1 + 𝐶)
(𝐵" − 𝐵)(𝐵 + 𝐵" − 2)

* 

Geom(𝐶) 

Geom(𝐵𝐶) 

Ge
om

( 𝐵
𝐶)

 

Geom 

𝐵 < 𝐵+  

Geom(𝐶) 

Geom(𝐵+𝐶) 

!𝐶(𝐵 − 𝐵!)𝑛"#$( 

𝑛 → ∞ 

𝐵 > 𝐵+  

𝑛,  𝑛 

𝑛,  

𝑛 

𝐵𝐶𝑛 

𝐶𝑛 

𝐶𝑛 
𝐶𝑛 

𝐶𝑛 𝐶𝑛 𝐶𝑛 𝐵𝐶𝑛 

⋮ 

⋮ 

⋮ 

𝐵𝐶𝑛 

𝐶𝑛 𝐶𝑛 𝐶𝑛 ⋮ 

𝐶𝑛 

𝐶𝑛 

⋮ 

𝐶𝑛 

𝑛 → ∞ 
Geom(𝐶) 

• Empirical distribution of eigenvalues ⇒ circular law (Nguyen ’14 [12])
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Barvinok margin

▶ What about non-uniform margins?

 

𝐵 1 2 0 1 + √2 

cଵ ≡ √2  
cଵ  
cଶ  

1 

√2 

𝐶𝑛 

𝐶𝑛 

𝐶𝑛 

𝐵𝐶𝑛 

𝐵𝐶𝑛 

⋮ 

𝐶𝑛 𝐶𝑛 𝐶𝑛 𝐵𝐶𝑛 𝐵𝐶𝑛 ⋯ 

⋮ 

⋯ 

𝑛 𝑛ఋ  

𝑛ఋ  

𝑛 

ቆ
𝐵ଶ(1 + 𝐶)

(𝐵௖ − 𝐵)(𝐵 + 𝐵௖ − 2)
ቇ 

Geom(𝐶) 

Geom(𝐵𝐶) 

G
e

o
m

( 𝐵
𝐶

)  

Geom(𝐶) 

Geom(𝐵௖𝐶) 

G
e

o
m

( 𝐵
௖
𝐶

)  

Geom Geom ൫𝐶(𝐵 − 𝐵௖)𝑛ଵିఋ൯ 

𝐵𝐶𝑛 

𝐶𝑛 

𝐶𝑛 

𝐶𝑛 

𝐶𝑛 

⋮ 

𝐶𝑛 𝐶𝑛 𝐶𝑛 𝐶𝑛 ⋮ 𝐵𝐶𝑛 

𝑛 1 

1 

𝑛 

• Let r = c = (⌊BCn⌋, ⌊Cn⌋, · · · , ⌊Cn⌋) ∈ Nn. Let
X = (Xij) be the uniform contingency table with
this margin.

• Do we still have convergence to geometric
entries for all B,C ≥ 1?

• If so, what are the means of the geometric
distribution in each block?
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• Let r = c = (⌊BCn⌋, ⌊Cn⌋, · · · , ⌊Cn⌋) ∈ Nn. Let
X = (Xij) be the uniform contingency table with
this margin.

• Do we still have convergence to geometric
entries for all B,C ≥ 1?

• If so, what are the means of the geometric
distribution in each block?
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Barvinok margin

▶ What about non-uniform margins?
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Barvinok’s conjecture

▶ Based on a typical table computation, Barvinok conjectured in 2010 that each
entry in X is asymptotically distributed as a geometric variable.

▶ Furthermore, for C = 1, he conjecture that E[X11] = O(1) for B < 2 and
E[X11] = Θ(n) for B > 1 +

√
2.

 

  

G
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m
( 𝐵

)  
3 5 3 0 3 5 

13 

10 

15 
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14 

19 

9 13 9 19 11 21 

1 0 3 2 0 7 

0 3 4 0 2 1 

0 0 1 2 5 7 

9 3 1 3 0 0 

2 0 8 1 3 0 

13 

10 

15 

16 

14 

19 

9 13 9 19 11 21 

𝑋 = ൫𝑋௜௝൯ 𝑣. 𝑠. 

Data Null model 

Geom(1) Geom(1) 

Geom (𝑧ଵଵ), zଵଵ ≥ ൫𝐵 − 1 − √2൯𝑛  Geom (𝑧ଵଵ), zଵଵ = 𝑂(1)   

Geom(𝐵) 

B < 2 B > 1 + √2 ≈ 2.414 
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Phase transition in asymptotic distribution

Theorem (Dittmer, L., and Pak ’20)

Let 1/2 < δ < 1 and a = b = (

nδ︷ ︸︸ ︷
BCn, . . . ,BCn,

n−nδ︷ ︸︸ ︷
Cn, . . . . . . . . . ,Cn) ∈ Nn. Let

Bc := 1 +
√

1 + 1/C and X ∼ Uniform(T (a, b)). Then X marginally converges to the
following matrix in total variation distance:

 

𝐵 1 2 0 1 + √2 

cଵ ≡ √2  
cଵ  
cଶ  

1 

√2 

𝐶𝑛 

𝐶𝑛 

𝐶𝑛 

𝐵𝐶𝑛 

𝐵𝐶𝑛 

⋮ 

𝐶𝑛 𝐶𝑛 𝐶𝑛 𝐵𝐶𝑛 𝐵𝐶𝑛 ⋯ 

⋮ 

⋯ 

𝑛 𝑛ఋ 

𝑛ఋ 

𝑛 

Geom(𝐶) 

Geom(𝐵௖𝐶) 

G
eo

m
( 𝐵

௖
𝐶

)  

Geom ൫𝐶(𝐵 − 𝐵௖)𝑛ଵିఋ൯ 𝑛ఋ 𝑛 

𝑛ఋ 

𝑛 

𝑛 → ∞ 

ቆ
𝐵ଶ(1 + 𝐶)

(𝐵௖ − 𝐵)(𝐵 + 𝐵௖ − 2)
ቇ 

Geom(𝐶) 

Geom(𝐵𝐶) 

G
eo

m
( 𝐵

𝐶
)  

Geom 

𝐵 < 𝐵௖ 𝐵 > 𝐵௖  

𝐵𝐶𝑛 

𝐵𝐶𝑛 

𝐶𝑛 

𝐶𝑛 
𝐶𝑛 

𝐶𝑛 𝐶𝑛 𝐶𝑛 𝐵𝐶𝑛 

⋮ 

⋮ 

⋮  

• Where is this sharp phase transition coming from?

Hanbaek Lyu Large random matrices with given margins



Phase transition in asymptotic distribution

Theorem (Dittmer, L., and Pak ’20)

Let 1/2 < δ < 1 and a = b = (

nδ︷ ︸︸ ︷
BCn, . . . ,BCn,

n−nδ︷ ︸︸ ︷
Cn, . . . . . . . . . ,Cn) ∈ Nn. Let

Bc := 1 +
√

1 + 1/C and X ∼ Uniform(T (a, b)). Then X marginally converges to the
following matrix in total variation distance:

 

𝐵 1 2 0 1 + √2 

cଵ ≡ √2  
cଵ  
cଶ  

1 

√2 

𝐶𝑛 

𝐶𝑛 

𝐶𝑛 

𝐵𝐶𝑛 

𝐵𝐶𝑛 

⋮ 

𝐶𝑛 𝐶𝑛 𝐶𝑛 𝐵𝐶𝑛 𝐵𝐶𝑛 ⋯ 

⋮ 

⋯ 

𝑛 𝑛ఋ 

𝑛ఋ 

𝑛 

Geom(𝐶) 

Geom(𝐵௖𝐶) 

G
eo

m
( 𝐵

௖
𝐶

)  

Geom ൫𝐶(𝐵 − 𝐵௖)𝑛ଵିఋ൯ 𝑛ఋ 𝑛 

𝑛ఋ 

𝑛 

𝑛 → ∞ 

ቆ
𝐵ଶ(1 + 𝐶)

(𝐵௖ − 𝐵)(𝐵 + 𝐵௖ − 2)
ቇ 

Geom(𝐶) 

Geom(𝐵𝐶) 

G
eo

m
( 𝐵

𝐶
)  

Geom 

𝐵 < 𝐵௖ 𝐵 > 𝐵௖  

𝐵𝐶𝑛 

𝐵𝐶𝑛 

𝐶𝑛 

𝐶𝑛 
𝐶𝑛 

𝐶𝑛 𝐶𝑛 𝐶𝑛 𝐵𝐶𝑛 

⋮ 

⋮ 

⋮  

• Where is this sharp phase transition coming from?

Hanbaek Lyu Large random matrices with given margins



Typical table

▶ (Barvinok ’10 [2]) For a m× n margin (r, c), the corresponding typical table is

Z r,c := argmax
X∈T (r,c)

∑
i,j

(xij + 1) log(xij + 1)− xij log(xij)︸ ︷︷ ︸
=g(X)

= argmax
X∈T (r,c)

∑
i,j

Entropy(Geom(mean = xij))

= argmin
X∈T (r,c)

∑
i,j

D
(
µϕ(xij) ∥µ = Counting(N)

)

▶ Barvinok’s insight:

Uniformly random CT with margin (r, c) ≈ Z r,c

• (Barvinok ’09 [1], ’10 [2]) Y = (n× n) random matrix of independent entries
Yij ∼ Geom(zij) = µϕ(zij). Then for each CT X with margin (r, c),

P(Y = X |Y ∈ T (r, c)) ≡ exp(−g(Z))

• Brändén, Leake, and Pak ’23 [3] generalized this result to CTs with possibly
bounded integer values (Using Lorenzian polynomials)
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Sharp phase transition in typical tables

▶ Typical tables can change drastically by a small change in the margin!

• For 0 ≤ δ < 1, DLP [8] show that Z r,c undergoes a sharp phase transition at
Bc = 1 +

√
1 + C−1:

 

  

𝑛 → ∞ 

1 𝑛 − 1 

1 
𝑛
−
1 

𝐵𝐶𝑛 

𝐶𝑛 

𝐶𝑛 

𝐶𝑛 𝐶𝑛 𝐶𝑛 𝐵𝐶𝑛 

⋮ 

⋮ 

𝐶𝑛 

!
𝐵!(1 + 𝐶)

(𝐵" − 𝐵)(𝐵 + 𝐵" − 2)
* 

Geom(𝐶) 

Geom(𝐵𝐶) 

Ge
om

( 𝐵
𝐶)

 

Geom 

𝐵 < 𝐵+  

Geom(𝐶) 

Geom(𝐵+𝐶) 

Ge
om

( 𝐵
+𝐶
)  

(𝐶(𝐵 − 𝐵!)𝑛, 𝜎"#) N 

𝐵 > 𝐵+  

𝐵!(1 + 𝐶)
(𝐵" − 𝐵)(𝐵 + 𝐵" − 2)

 

𝐶 

𝐵𝐶 

𝐵 < 𝐵+ ≔ 1+ 31+ 1/𝐶	 

𝐵+𝐶 

𝐶(𝐵 − 𝐵!)𝑛$%𝜌 

𝑛 → ∞ 

𝐵 > 𝐵+  

𝑛- 𝑛 

𝑛- 

𝑛 

𝐵𝐶𝑛 

𝐶𝑛 

𝐶𝑛 
𝐶𝑛 

𝐶𝑛 𝐶𝑛 𝐶𝑛 𝐵𝐶𝑛 

⋮ 

⋮ 

⋮ 

𝐵𝐶𝑛 

𝐵𝐶 𝐵+𝐶 𝐶 

• This result was used to obtain a second-order phase transition in the number of
CTs with Barvinok margin by Lyu and Pak ’22 [10]
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What have we learned?

▶ Back to the margin-conditioned random matrix (RM) setting.

▶ Recall the (generalized) typical table

Z r,c = argmax
X∈T (r,c)∩(A,B)m×n

∑
i,j
−D(µϕ(xij) ∥µ)

▶ A natural statistical model for margin-conditioned RM = (α,β)-model

• Y = (Yij), independent entries Yij ∼ µα(i)+β(j)
• MLE ⇐⇒ E[Y ] ∈ T (r, c)

▶ (Strong duality; this work [9])

• argmin
Z

Relative Entropy(Z) = argmax
α,β

Likelihood Of Margin(α,β)

• For ψ′ = tilt2mean function,

Z r,c
ij︸︷︷︸

typical table

= ψ′
(
α(i) + β(j)︸ ︷︷ ︸

=MLE

)
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• Y = (Yij), independent entries Yij ∼ µα(i)+β(j)
• MLE ⇐⇒ E[Y ] ∈ T (r, c)

▶ (Strong duality; this work [9])

• argmin
Z

Relative Entropy(Z) = argmax
α,β

Likelihood Of Margin(α,β)

• For ψ′ = tilt2mean function,

Z r,c
ij︸︷︷︸

typical table

= ψ′
(
α(i) + β(j)︸ ︷︷ ︸

=MLE

)
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Tame margins

▶ Z r,c
ij︸︷︷︸

typical table

= ψ′
(
α(i) + β(j)︸ ︷︷ ︸

=MLE

)

▶ (Tame margins) For δ > 0, a margin (r, c) is δ-tame if the typical table Z r,c exists
and its entries satisfy

Aδ := max
(

A + δ,−δ−1
)
≤ Z r,c ≤ min

(
B− δ, δ−1

)
=: Bδ.

(i.e., corresponding MLE is δ-non-degenearte)

• Tanemess for µ with compact support ⇐⇒ Boundedness of MLE
• Non-tanemess for µ with unbounded support ⇐⇒ Diverging typical table

▶ (Sharp conditions for tameness; this work [9])

• Suppose sn ≤ r− ≤ r+ ≤ tn and sm ≤ c− ≤ c+ ≤ tm. Then δ-tame if t
s ≪ 1

• In particular, for µ = Counting(N), then
δ-tame ⇐= t/s < ρc := 1 +

√
1 + s−1

Diverging typical tables ⇐= t/s > ρc

(Generalizes the subcritical behavior of Barvinok margin) (ρc = Bc for s = C )
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Concentration of large random matrices with given margin

Theorem (L., and Muhkerjee ’24+)
(r, c) = (m× n) δ-tame margin, Z = Z r,c Let X = (Xij) ∼ µ⊗(m×n). Then for some
constants Ci = Ci(δ, µ) > 0 for i = 1, 2,
(i) ∃ MLE α ∈ Rm, β ∈ Rn such that Zij = ψ′(α(i) + β(j)) for all i, j.

(ii) Let Y = (Yij) be a m× n RM of indep. entries Yij ∼ µα(i)+β(j). Then E[Y] = Z
and for each t, ε ≥ 0,

P
(
∥WX −WZ∥□ ≥ t

∣∣∣∣ X ∈ Tεmn(r, c)
)

≤ P (Y ∈ Tεmn(r, c))−1 exp

(
C1εmn + (m + n + 1) log 2− t2mn

2C1

)
.

Cut-norm: ∥W∥□ := supS,T⊆[0,1]

∣∣∣∫S×T W(x, y) dx dy
∣∣∣

(iii) Denote s(m, n) := mn
√

m−1 + n−1. Then

P
(
∥WX −WZ∥□ ≥ C1

(
m−1 + n−1

)1/4
∣∣∣∣ X ∈ TC1s(m,n)(r, c)

)
≤ exp (−C2s(m, n)) .
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Limit of large random matrices with given margins

Theorem (L., and Muhkerjee ’24+)

(rm, cn) = seq. of m× n δ-tame margins → continuum margin (r, c) in L1 as
m, n→∞.
(i) ∃ bounded measurable α,β : [0, 1]→ R such that the kernel

W r,c(x, y) := ψ′(α(x) + β(y))

has continuum margin (r, c).

(ii) For C = C(µ, δ) > 0,

(∗) ∥W r,c −WZrm,cn ∥2
2 ≤ Cδ∥(r, c)− (̄rm, c̄n)∥1.

In particular, ∥W r,c −WZrm,cn ∥2 → 0 as m, n→∞.
(iii) Denote s(m, n) := mn

√
m−1 + n−1 and let X ∼ µ⊗(m×n) be conditional on

X ∈ Ts(m,n)(rm, cn). Then with prob. at least 1− exp (−C1s(m, n)),

∥WX −W r,c∥□ ≤ C2
(

m−1 + n−1
)1/4

︸ ︷︷ ︸
fluctuation around WZrm,cn

+C2
√
∥(r, c)− (̄rm, c̄n)∥︸ ︷︷ ︸

bias (∗)
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Exact conditioning for contingency tables

Corollary (L., and Muhkerjee ’24+)

Assume Supp(µ) = {0, 1, · · · ,B} for some B ∈ {1, 2, · · · ,∞}.
Let (rm, cn) = seq. of m× n δ-tame margins → continuum margin (r, c) in L1 as

m, n→∞.
Let X ∼ µ⊗(m×n) be conditioned on satisfying the margin (rm, cn) exactly.

(i) (Finite support) Suppose B <∞. Then for each ε > 0, with probability at least
1− exp

(
−(mn)(1/4)+ε

)
,

∥WX −W r,c∥□ ≤ c1 (mn)−(1/8)+ε + c2
√
∥(r, c)− (̄rm, c̄n)∥1.

(ii) (Infinite support) Suppose µ is the counting measure on Z≥0 Then for each ε > 0,
with probability at least 1− exp

(
−(mn)(1/2)+ε

)
,

∥WX −W r,c∥□ ≤ c1 (mn)−(1/4)+ε + c2
√
∥(r, c)− (̄rm, c̄n)∥1.

• We can do exact conditioning whenever P(Y ∈ T (rm, cn)) ≥ exp(−o(mn)), where
Y ∼ ML (α,β)-model

• δ-tame condition ⇐ ‘asymmetric EG-condition’ for (i), ‘subcriticality’ for (ii)
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Open problems

▶ There is rich literature on the connection between Schrödinger bridge and optimal
transport (see, e.g., [11, 13]).

• For γ : R2 → R≥0 a cost function and ε > 0 fixed, then taking
R ∝ e−γ/εµ1 ⊗ µ2, then

min
H∈Π(µ1,µ2)

DKL(H∥R) ⇐⇒ min
H∈Π(µ1,µ2)

∫
R2
γ(x, y)H(dx, dy) + εDKL(H∥µ1 ⊗ µ2),

which is the optimal transport with entropic regularization [14].
• Classical case with quadratic cost: γ(x, y) = (x− y)2

▶ An OT version of our margin-conditioned random matrix problem?

• γ : Rm×n → R≥0 a cost function on m× n real matrices
• Replacing the base model R with a probability measure proportional to e−γ/εR,

min
H∈Pm×n

∫
Rm×n

γ(x)H(dx) + εDKL(H∥R) s.t. EX∼H[(r(X), c(X))] = (r, c)

(Natural matrix-loss function γ? Spectral norm?)
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Open problems

▶ Extend the theory for more general base measure for RM ensemble than i.i.d.?

▶ δ-tame marginal dist. in the Shrödinger bridge / Optimal transport theory?

min
H∈Π(ν1,ν2)

DKL(H∥ e−γ/εµ1 ⊗ µ2)

Phase transition (ν1, ν2) deviates away from (µ1, µ2)?
▶ Perturbation bound on Shrödinger bridge / Optimal transport?

∥Z r,c − Z r′,c′∥2
F ≤ Cδ∥(r, c)− (r′, c′)∥1.

▶ Limit theory for Shrödinger bridge / Optimal transport?
▶ Large Deviations Principle? (For random graphs with given degree sequence, LDP

is done by Dhara and Sen ’22 [7])

• Ongoing work with Sumit Muhkerjee

▶ Condition on other statistics than row/column margin?

• Ongoing work with William Powell (grad student)

▶ Current theory concerns conditioning on dense margin. Condition on sparse margin?

• Ongoing work with David Clancy (postdoc)
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Thank you very much!
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