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Lectures on Optimal Transport. May, 2022. KAIST

Young-Heon Kim (Department of Mathematics, University of British Columbia)

Lecture 1 The Monge-Kantorovich problem and duality.

Lecture 2 Wasserstein geometry of the space of probability measures. Today!
Lecture 3 Entropic regularization of optimal transport.

Seminar Optimal Brownian stopping with free target and the supercooled Stefan problem.

Lecture 4 Application of optimal transport to developmental processes.

Lecture 5 Multimarginal optimal transport. Wasserstein barycentre.

Lecture 6 Optimal marginale transport

Lecture 7 Optimal Brownian martingale transport



Some references for the lectures

I Lecture 1, 2, and 3:
I Villani: Topics in Optimal Transport. Book
I Villani: Optimal Transport. Old and New. Book
I Cuturi & Payré: Computational Optimal Transport. Book

I Lecture 4:
I Schiebinger: https://broadinstitute.github.io/wot/tutorial/
I Kim, Lavenant, Schiebinger, Zhang: Towards a mathematical theory of trajectory

inference. https://arxiv.org/abs/2102.09204
I Lecture 5

I Cuturi & Payré: Computational Optimal Transport. Book
I Kim & Pass: Wasserstein Barycenters over Riemannian manifolds. Adv. in Math. 2017.

I Lecture 6
I Ghoussoub, Kim, & Lim: Structure of optimal martingale transport in general

dimensions. Ann. Prob. 2019.
I Lecture 7

I Ghoussoub, Kim, & Palmer: PDE Methods For Optimal Skorokhod Embeddings. Calc.
Var. 2019.

I Ghoussoub, Kim, & Palmer: A solution to the Monge transport problem for Brownian
martingales. Ann. Prob. 2021.

I I. Kim & Y. Kim.The Stefan problem and free targets of optimal Brownian martingale
transport. Preprint. 2021



Recall

MK (µ, ν) := min
π∈Π(µ,ν)

∫
X×Y

c(x , y)dπ(x , y).

Theorem (Brenier 80’s)
Suppose
I X = Y = Rn, µ, ν are probability measures, compactly supported.
I µ� Lebesgue,

I that is, dµ = fdm, for the Lebesgue measure m, f measurable;

I c(x , y) = |x − y |2.

Then,
I there exists unique optimal solution π∗ to MK (µ, ν);
I π∗ is given by a measurable mapping T : Rn → Rn defined µ-a.e., that is,
π∗ = (id × T )#µ;

I T is given by a convex function φ : Rn → R in the sense that T (x) = ∇φ(x) for
µ-a.e. x.

In this case, d2
W (µ, ν) =

∫
|x −∇φ(x)|2dµ(x).



Wasserstein distance between probability measures on Rd

Let X = Rd , dist(x , y) = |x − y |.
(More generally, (X , dist) can be a separable, complete metric space;e.g. path space
C([0, 1];Rd ) with uniform metric on curves.)
I A distance between probability measures µ, ν on X .

dW (µ, ν) =

√
min

π∈Π(µ,ν)

∫
X

∫
X

dist2(x , y)dπ(x , y)

called the Wasserstein distance.
For p > 1, p-Wasserstein distance: replace 2 with p.

I Triangle inequality: dW (µ1, µ3) ≤ dW (µ1, µ2) + dW (µ2, µ3).

I P(X) =“the space of probability measures on X ", becomes a natural metric
space with dW :

I Isometric imbedding X 3 x 7→ δx ∈ P(X). dW (δx , δy ) = dist(x, y).



Wasserstein distance and weak* topology

I weak* topology: µk → µ in weak* iff ∀f ∈ C0(Rd ),
∫

fdµk →
∫

fdµ.

I Theorem: For µk , µ ∈ P(Rd ),

lim
k→∞

dW (µk , µ) = 0

iff (1) µk → µ in weak* and (2) dW (δ0, µk )→ dW (δ0, µ).
(Proof is long but straightforward.)



Wasserstein geodesics
A curve σ : [0, 1]→ P(Rd ) is said to be a (dW -length minimizing) geodesic
if ∀s, t ∈ [0, 1],

dW (σ(s), σ(t)) = |s − t |dW (σ(0), σ(1)).

Notation: P2(Rd ) = {µ ∈ P(Rd ) | dW (δ0, µ) <∞}.

Theorem: A geodesic exists between any µ0, µ1 ∈ P2(Rd ). More precisely,

Theorem (McCann’s displacement interpolation)
I Let c(x , y) = |x − y |2 and µ0, µ1 ∈ P2(Rd ).
I Let π0 ∈ Πop(µ0, µ1) (← the set of optimal transport plans).
I For each s ∈ [0, 1], define Is : Rd × Rd → Rd by Is(x , y) = (1− s)x + sy.
I Let µs := (Is)#π0. (← "Displacement interpolation between µ0 and µ1.")

Then
I s 7→ µs is a dW -length minimizing geodesic between µ0 and µ1.
I Moreover, πs := (I0 × Is)#π0 ∈ Πop(µ0, µs).

Example
If π0 = (id ×∇ψ)#µ0 (← Here ∇ψ is the Monge solution of Brenier.)
then, µs = ((1− s)id + s∇ψ)#µ0.



Differential Geometry on the space of probability measures

I Notation: P2,ac(Rd ) = P2(Rd ) ∩ {µ | µ� Leb}.
I We can consider "smooth" (in weak sense) curves ρ : [−δ, δ]→ P2,ac(Rd ) as a

"smooth" (in weak sense) family of probability measures.

I For ρ ∈ P2,ac(Rd ), roughly speaking, the tangent space TρP2,ac(Rd ), is given as

TρP2,ac(Rd ) ” = ”

{
∂ρ

∂t

∣∣∣
t=0

∣∣∣ for a smooth curve ρ(t), −δ ≤ t ≤ δ, in P2,ac(Rd )

}

I An infinitesimal version of Wasserstein metric?
Question: How to define metric (norm) ‖ ∂ρ

∂t ‖ρ at TρP2,ac(Rd ) such that

d2
W (µ, ν) = inf

curve ρt in P2,ac with ρ0 = µ, ρ1 = ν

{∫ 1

0

∥∥∥∥∂ρt

∂t

∥∥∥∥2

ρt

dt

}
?

It is natural to set ∥∥∥∥∂ρt

∂t

∥∥∥∥2

ρt

=

∣∣∣∣ d
dε

∣∣∣
ε=0

dW (ρt , ρt+ε)

∣∣∣∣2



Infinitesimal mass transport and continuity equation
I Underling idea: Mass changes due to motion by vector fields.

change of mass distribution ↔ vector fields.

I Infinitesimal mass transport:

(Tε)#ρt = ρt+ε ⇐⇒ ρt+ε(Tε(x)) det(∇Tε(x)) = ρt (x).

When Tε = id + ε~V + o(ε), differential the righthand side in ε at ε = 0, and get

∂tρt +∇ρt · ~V + ρt div ~V = 0

That is,

∂tρt + div(ρt ~V ) = 0 "continuity equation"

I I A pair (ρ,V ) = (ρt ,Vt )0≤t≤1 (time dependent distribution ρt and vector field Vt ): is said
to be admissible if it satisfies the continuity equation in a weak sense.

I "Energy" of (ρ,V ): ∫ 1

0

∫
|Vt |2ρt dxdt.

(← convex in ρ and ρV .)
I Length distance between µ, ν ∈ P2,ac(Rd ).

d̃W (µ, ν) =

√
inf

(ρ,V ) admissible,ρ0=µ,ρ1=ν

∫ 1

0

∫
|Vt |2ρt dxdt.

I Both the functional and constraint are linear in the mass ρ and the momentum ρV .



Infinitesimal optimal transport

I Take the optimal transport Tε with (Tε)#ρt = ρt+ε.
I Brenier⇒ Tε = ∇ψε for some convex ψε.
I So,

Tε = ∇ψε = id + ε∇u + o(ε) for some function u : Rd → R with d
dε

∣∣∣
ε=0

Tε = ∇u.

I It follows

d2
W (ρt , ρt+ε) =

∫
|x − Tε(x)|2ρt dx

=

∫
|ε∇u(x) + o(ε)|2ρt dx = ε2

∫
|∇u|2ρt dx + o(ε).

I Therefore, ∣∣∣∣ d
dε

∣∣∣
ε=0

dW (ρt , ρt+ε)

∣∣∣∣2 =

√∫
|∇u|2ρt dx

I We can define∥∥∥∥∂ρt

∂t

∥∥∥∥2

ρt

:=

∫
|∇u|2ρt dx where ∇u = limε→0 Tε for (Tε)#ρt = ρt+ε.



Remark:

I Given a curve ρt there can be infinitely many ~V satisfying the continuity equation
∂tρ+ divρ~V = 0.

I The gradient vector field ∇u with the continuity equation ∂tρ+ divρ∇u = 0, is the
one that has the smallest L2 norm with respect to ρ:∫

|∇u|2ρdx = inf
admissible ~V

∫
|~V |2ρdx

I ∇u is the optimal infinitesimal transport!



Summary
I Continuity equation is an infinitesimal mass transport.
I Optimal infinitesimal mass transport is the continuity equation with the vector field
~V given by the gradient ∇u of a function!

I We have the correspondence

∂tρ ←→ ∇u

with

∂tρ+ div(ρ∇u) = 0

I ∥∥∥∥∂ρt

∂t

∥∥∥∥2

ρt

=

∫
|∇u|2ρt dx where ∇u = limε→0 Tε for (Tε)#ρt = ρt+ε.



Benamou-Brenier

Theorem (Benamou-Brenier ’97)
For µ, ν ∈ P2,ac(Rd ),

d2
W (µ, ν) = inf

curve ρt in P2,ac from ρ0 = µ to ρ1 = ν

{∫ 1

0

∥∥∥∥∂ρt

∂t

∥∥∥∥2

ρt

dt

}

= inf
∂tρ+div(ρ∇u)=0, ρ0=µ,ρ1=ν

{∫ 1

0
|∇u|2ρdxdt

}
= d̃2

W (µ, ν)

= inf
(ρ,V ) admissible,ρ0=µ,ρ1=ν

∫ 1

0

∫
|Vt |2ρt dxdt .

Proof.
See e.g. [Villani, Topics in Optimal Transport].



Otto’s metric on P2,ac(Rd): an infinitesimal Wasserstein metric

I Recall the infinitesimal optimal transport equation, that is, the continuity equation
+ gradient vector field:

∂tρ+ div(ρ∇u) = 0.

I This gives the correspondence

∂tρ←→ ∇u.

while

‖∂tρ‖2
ρ =

∫
|∇u|2ρdx .

I Then, we can define the W2 Riemannian metric for ∂tρ
1, ∂tρ

2 ∈ Tρ(P2,ac(Rd )):

〈∂tρ
1, ∂tρ

2〉ρ =

∫
〈∇u1,∇u2〉ρdx

with ∂tρ1 + div(ρ1∇u1) = 0, ∂tρ2 + div(ρ2∇u2) = 0.

I Each metric 〈, 〉ρ at Tρ(P2,ac(Rd )) depends on ρ!



Otto’s calculus: the gradient gradW with respect to the Wasserstein
metric.

I Given a functional F : P2,ac(Rd )→ R,
and a curve ρt , −δ ≤ t ≤ δ, with ∂tρ+ div(ρ∇u) = 0,

d
dt

∣∣∣
t=0
F(ρ(t)) =

〈
gradWF(ρ),

∂ρ

∂t

∣∣∣
t=0

〉
ρ

=

∫
〈?,∇u〉ρdx .

I For the correspondence

∂tρ←→ ∇u.

what is the counterpart for gradWF(ρ)?

gradWF(ρ)←→ ?



Otto’s calculus: a key calculation

I Consider F(ρ) =
∫

U(ρ)dx .
I Then

d
dt
F(ρ) =

∫
δU
δρ

(ρ)∂tρdx

= −
∫

δU
δρ

(ρ)div(ρ∇u)dx (from ∂tρ+ div(ρ∇u) = 0.)

=

∫
〈∇
(
δU
δρ

(ρ)

)
,∇u〉ρdx .

I Therefore we have the correspondence:

gradWF(ρ)←→ ∇
(
δU
δρ

(ρ)

)
.



Gradient flows

I Gradient flow: It is the steepest descent!

I Given F : X → R, the gradient flow of F , is the curve x(t) in X that satisfies

d
dt

x(t) = −∇F (x(t))

where the gradient ∇ is determined by the choice of Riemannian metric.
I Many physical systems can be understood as gradient flows of certain physical

quantities, e.g. energy, entropy, etc.



Otto’s calculus: Gradient flows, entropy and the heat equation

Example

(Mathematical) Entropy: Ent(ρ) =

∫
ρ log ρdx .

Physical entropy is the negative of the mathematical one, by convention.

I Let U(ρ) = ρ log ρ.
I Then

∂ρU = log ρ+ 1. Thus ∇∂ρU = ∇[log ρ(x)].

I So,

−gradW2 Ent ←→ −∇[log ρ(x)].

I Therefore, the gradient flow of the entropy functional with respect to the
Wasserstein metric is:

∂tρt + div(ρt (−∇ log ρt )) = 0 that is, ∂tρ− div∇ρ = 0 the heat equation!.

Remark: Many (nonlinear) diffusion equations, e.g. the porous medium equation, can
be written as the gradW flow of a certain functional on P2,ac(Rd ).



Next: Lecture 3: Entropic regularization of optimal transport.

See you next week!


