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Lectures on Optimal Transport. May, 2022. KAIST

Young-Heon Kim (Department of Mathematics, University of British Columbia)

Lecture 1 The Monge-Kantorovich problem and duality.
Lecture 2 Wasserstein geometry of the space of probability measures. Today!
Lecture 3 Entropic regularization of optimal transport.
Seminar Optimal Brownian stopping with free target and the supercooled Stefan problem.
Lecture 4 Application of optimal transport to developmental processes.
Lecture 5 Multimarginal optimal transport. Wasserstein barycentre.
Lecture 6 Optimal marginale transport
Lecture 7 Optimal Brownian martingale transport



Some references for the lectures

» Lecture 1, 2, and 3:

> Villani: Topics in Optimal Transport. Book
P Villani: Optimal Transport. Old and New. Book
P Cuturi & Payré: Computational Optimal Transport. Book

> Lecture 4:
> Schiebinger: https://broadinstitute.github.io/wot/tutorial/
P Kim, Lavenant, Schiebinger, Zhang: Towards a mathematical theory of trajectory
inference. https://arxiv.org/abs/2102.09204
> Lecture 5
» Cuturi & Payré: Computational Optimal Transport. Book
P> Kim & Pass: Wasserstein Barycenters over Riemannian manifolds. Adv. in Math. 2017.
> Lecture 6
P Ghoussoub, Kim, & Lim: Structure of optimal martingale transport in general
dimensions. Ann. Prob. 2019.
> Lecture 7
» Ghoussoub, Kim, & Palmer: PDE Methods For Optimal Skorokhod Embeddings. Calc.
Var. 2019.
P Ghoussoub, Kim, & Palmer: A solution to the Monge transport problem for Brownian
martingales. Ann. Prob. 2021.

P> |. Kim & Y. Kim.The Stefan problem and free targets of optimal Brownian martingale
transport. Preprint. 2021



Recall

MK(p,v) == min / c(x,y)dn(x,y).
me€N(p,v) Jxxy
Theorem (Brenier 80’s)
Suppose
> X =Y =R", u,v are probability measures, compactly supported.
> < Lebesgue,
> thatis, du = fdm, for the Lebesgue measure m, f measurable;
> c(x,y) = |x—yP
Then,
> there exists unique optimal solution ©* to MK (u, v);
> 7* s given by a measurable mapping T : R" — R" defined u-a.e., that is,
= (id x T)pp;

> T is given by a convex function ¢ : R" — R in the sense that T(x) = V¢(x) for
p-a.e. X.

In this case, d2,(p,v) = [ |x — Vé(x)[2du(x).



Wasserstein distance between probability measures on R?

Let X = RY, dist(x,y) = |x — y|.
(More generally, (X, dist) can be a separable, complete metric space;e.g. path space
C([0, 1]; RY) with uniform metric on curves.)

> A distance between probability measures p, v on X.

dw(pv) =,/ min //diste(x,y)dn-(x,y)
TeM(p,v) JXx JX

called the Wasserstein distance.
For p > 1, p-Wasserstein distance: replace 2 with p.

> Triangle inequality: dyw (111, #3) < dw (1, p2) + dw(pz, p3)-

> P(X) ="the space of probability measures on X", becomes a natural metric
space with dy:

> Isometric imbedding X > x — §x € P(X). dw(dx.d,) = dist(x, y).



Wasserstein distance and weak* topology

> weak* topology: ux — pin weak* iff Vf € Co(RY), [ fdux — [ fdu.

> Theorem: For yy, u € P(RY),

lim dw(uk,p) =0
k— oo

iff (1) ux — p in weak* and (2) dw(do, k) — dw (o, ).
(Proof is long but straightforward.)



Wasserstein geodesics
Acurve o : [0,1] — P(RY) is said to be a (d}y-length minimizing) geodesic
it s, t € [0,1],

dw(o(s), (1)) = [s — tldw(c(0), o(1)).

Notation: Po(RY) = {1 € P(RY) | dw (g, p) < o0}
Theorem: A geodesic exists between any g, 11 € Po(R?). More precisely,
Theorem (McCann'’s displacement interpolation)

> Letc(x,y) =[x — y|? and po, 1 € Pa(RY).

> Letmg € Mop(po, 1) (+ the set of optimal transport plans).

> Foreachs € [0, 1], define Is : RY x R? — RY by Is(x, y) = (1 — 8)x + sy.

> Let s := (Is)xmo. (+— "Displacement interpolation between p and pi1.")
Then

> s — us is a dy-length minimizing geodesic between iy and pu1.
» Moreover, ms 1= (ly x Is)xmg € Mop(po, 11s)-

Example
If my = (id x V) pug (< Here V) is the Monge solution of Brenier.)
then, ps = ((1 — 8)id + V)4 po.



Differential Geometry on the space of probability measures

> Notation: P, 5(RY) = Po(RY) N {n | p < Leb}.

> We can consider "smooth" (in weak sense) curves p : [—6, 5] — Ps ac(RY) as a
"smooth" (in weak sense) family of probability measures.

» Forp e Pgﬁac(Rd), roughly speaking, the tangent space T,,ngac(Rd), is given as

Op

TpP2.ac(RY) " =" {E o ‘ for a smooth curve p(t), —6 < t < §,in P27ac(]Rd)}

> An infinitesimal version of Wasserstein metric?
Question: How to define metric (norm) ||%Hp at T, Ps, ac(RY) such that
PYNIL:
Pt dt}?
ot Pt

d2,(p,v) = inf /
w curve p; in Pp a0 With pg = p, p1 = v (Jo

It is natural to set
2

16)
H al dw(pt, ptie)

o ‘ e=0




Infinitesimal mass transport and continuity equation
> Underling idea: Mass changes due to motion by vector fields.

change of mass distribution <« vector fields.
> Infinitesimal mass transport:
(T)wpt = prre <= prac(Te(x)) det(VTe(x)) = pi(x).
When T. = id + €V + o(e), differential the righthand side in € at ¢ = 0, and get
Apt + Vot - V4 prdivV =0
That is,
Otpt + div(p;V) =0 "continuity equation"

> > Anpair(p, V) = (pt, Vt)o<i<1 (time dependent distribution p; and vector field V;): is said
to be admissible if it satisfies the continuity equation in a weak sense.

> "Energy" of (p, V):
1
/ / |V;|2 praxat.
0
(+ convex in p and pV.)
> Length distance between i, v € Pg, ac(RY).

1
dw(p, v) = inf V;|2 prdxat.
W(H ’/) \/(p,v)admiSS/g;,po:u,p.‘:V/0 /I t‘ Prox

> Both the functional and constraint are linear in the mass p and the momentum p V.




Infinitesimal optimal transport

> Take the optimal transport Te with (Te)xpt = ptye-

» Brenier = T, = V. for some convex ..
> So,
Te = Vipe = id + eVu+ o(e)  for some function u: RY — R with £ OTS =vu.
e=
> |t follows

(o, pre) = [ I = To(x)Bora

:/|ew(x)+o(e)|2p,dx:62/\vU|2p,dx+o(e).

2
=/ [ 17ukaa

2
= /\Vu|2p,dx where Vu = lim._,o T. for (Te)4pt = prre.
Pt h

< Iheeoe,
d‘
dE e=0

dw(pt, ptie)

» We can define

9t
ot




Remark:

> Given a curve p; there can be infinitely many V satisfying the continuity equation
Otp + divpV = 0.

> The gradient vector field Vu with the continuity equation d;p + divpVu = 0, is the
one that has the smallest L? norm with respect to p:

/|vU|2pdx: inf _'/|\7\2de
admissible V

> YVuis the optimal infinitesimal transport!



Summary
» Continuity equation is an infinitesimal mass transport.
> thimal infinitesimal mass transport is the continuity equation with the vector field
V given by the gradient Vu of a function!

» We have the correspondence
Op +— Vu
with

Otp + div(pVu) =0

0,
H ot /|VU|2p,dx where Vu = lim_,o Te for (Te) 4ot = prre-




Benamou-Brenier

Theorem (Benamou-Brenier '97)
Forp,v € P2,ac(Rd)r

Opt

ot

2
dt}
Pt

;
o (1,) = . inf i
curve p; in P a0 from pg = ptopr =v | Jo

;
. inf / |V ul?pdxdt
Otp+div(pVu)=0, po=p,p1=v | Jo

= diy(u,v)

4
- inf / /|Vt|2ptdxdt.
(p,V) admissible,pg=p,p1=v Jo

Proof.
See e.g. [Villani, Topics in Optimal Transport].



Otto’s metric on Pg,ac(Rd): an infinitesimal Wasserstein metric

> Recall the infinitesimal optimal transport equation, that is, the continuity equation
+ gradient vector field:
Otp + div(pVu) = 0.

> This gives the correspondence

Oip +— Vu.

while
||31P||i:/|Vu\2pdx.
> Then, we can define the W, Riemannian metric for 9;p", 8tp? € Tp(P2,ac(RY)):
(0rp", 01p%) ) = /(Vu1,Vu2)pdx

with 9;p1 + div(p1Vuy) =0, 0Orp2 + div(paVuo) = 0.

> Each metric (,), at T,(Pp,a:(RY)) depends on p!



Otto’s calculus: the gradient gradyy with respect to the Wasserstein
metric.

> Given a functional F : Py 5(RY) — R,
and a curve p;, —§ < t < §, with 9;p + div(pVu) = 0,

&, Flo) = <gradwf(p) 2| 0>

_ /(?,Vu)pdx.

» For the correspondence
Oip +— Vu.
what is the counterpart for grady F(p)?

gradwF(p) «— 7



Otto’s calculus: a key calculation

> Consider F(p) = [ U(p)dx
> Then

/ — (p)Orpdx
- / = (p)div(pu)ax  (from 01+ div(pVu) = 0)
P
sU
= [ (5.0) vus.
P
» Therefore we have the correspondence:

grady F(p) +— V (%(p)) ‘



Gradient flows

> Gradient flow: It is the steepest descent!

> Given F : X — R, the gradient flow of F, is the curve x(t) in X that satisfies

Ex(0) = ~VF(x(1)

where the gradient V is determined by the choice of Riemannian metric.

> Many physical systems can be understood as gradient flows of certain physical
quantities, e.g. energy, entropy, etc.



Otto’s calculus: Gradient flows, entropy and the heat equation

Example

(Mathematical) Entropy: Ent(p) = / p log pdx.

Physical entropy is the negative of the mathematical one, by convention.

> Let U(p) = plog p.
> Then

OpU =logp+ 1. Thus V9, U = Vlog p(x)].
> So,
—grady, Ent  <—  —V[log p(x)].

> Therefore, the gradient flow of the entropy functional with respect to the
Wasserstein metric is:

Otpt + div(pi(—Vlogpt)) =0 thatis, Oip— divVp =0 the heat equation!.

Remark: Many (nonlinear) diffusion equations, e.g. the porous medium equation, can
be written as the gradyy flow of a certain functional on ngac(]Rd).



Next: Lecture 3: Entropic regularization of optimal transport.

See you next week!



