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Assumption on Data distribution
P = P(RY) = probabilities over RY with finite second moments
Py = centered probabilities ([ x du(x) = 0) with finite 2nd moments
X~p,¥Y~vy,Rr~est. Y=X+R and E[R|X] =0 (p,v,e € Py)

Want to recover p from the observed data v which is disturbed by e.
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Joint distribution 7 = L(X, Y) of p,v is a martingale : E.[Y|X] = X
M(u,v) = set of all martingale couplings of p,v
M(p, v) = set of all couplings of p, v

Given data v and search domain D, we look for y € D solving

min - min  E[|X - Y]] (1)
HED e M(p,v)

= We try to summarize v by an optimal p* within the domain D.



Domain examples
Probabilities on curves and surfaces. Let Q C RY be compact.

C,L = {a [0, T] = Q ‘ ae Ck, |oz(k)| <M, |oz(k)(t) — oz(k)(s)| < Lt- s|},
D = {p e P(RY) | spt(u) € Im() for some o € Cy}.

— 7D is closed under the Wasserstein metric W5
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X;GRd,u,-ZO,Zu;—l}
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D = ] |30t < k) = {11 = 3w
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= D relates our problem (1) to the k-means clustering problem.

Probabilities on k points with uniform weights.

k
1
D{(Jni = {,U = Z(SX/. Xj € Rd}
i=1

Probabilities on monotone increasing curves.
... Domains are non-convex in general.
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Variance maximization s.t. Convex order constraint

For any m € M(p,v), since E-[XY] = E,[XE.[Y|X]] = E.[|X|?],
Eo[IX = Y] =E,[|Y["] - Eu[[X]]
= Var(v) — Var(p) if p,v € Po.

Since the (empirical) data v is given and fixed, the problem

min - min  E.[|X - Y|?]
neD meM(p,v)

can be equivalently formulated as

V 2
B V) @

p, v are in convex order < pu < v < [ fdp < [ fdv Vconvex function f
< M(p,v) is nonempty (Strassen’s theorem)



Existence of solutions and Convergence as noise vanishes

Theorem 1. i) If D C P(RY) is Wa-closed, then (2) attains a solution.
ii) Let u* be a solution to (2). Then for any p € D with p <. v, we have

Wao(u™, p) < v/Var(v) — Var(p) + Wa(v, p).

Consequently, Wa(u*, p) — 0 as Wa(v, p) — 0, i.e., as the noise vanishes.



Existence of solutions and Convergence as noise vanishes

Theorem 1. i) If D C P(RY) is Wa-closed, then (2) attains a solution.
ii) Let u* be a solution to (2). Then for any p € D with p <. v, we have

Wao(u™, p) < v/Var(v) — Var(p) + Wa(v, p).

Consequently, Wa(u*, p) — 0 as Wa(v, p) — 0, i.e., as the noise vanishes.
Proof. i) The set M, = {u|p 3¢ v} is Wh-compact, so is DN M,,.

ii) Recall Wo(p,v) = min E-[|X = Y|?].
weN(p,v)

Wa(u™,v) + Wa(v, p)
v ,T[\Xf Y |?] + Wa(v, p) for any m € M(u*,v)
= /Var(v) w*) + Wa(v, p)

v/ Var(v) — Var(p) + Wa(v, p). O

Wa(u™, p)
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A weak version of the convex order

In the problem  max  Var(p), it is difficult to check p <c v if d > 2.
pneED, p=<cv

=— We introduce a weaker version of convex order.



A weak version of the convex order

In the problem  max  Var(p), it is difficult to check p <c v if d > 2.
pneED, p=<cv

=— We introduce a weaker version of convex order.

Definition. We say i, v € P(R?) are in Kantorovich order, u = v, if

max )Eﬂ(X, Y —-X)>0 < K(u,v)>E, X
mell(u,v

= Wu(p,v)? <E, Y] —E, X

where K(p,v) := Trenn]?;u) E(X,Y)= WErgéﬂ;(y)/(x, yydm(x,y).

Note. p Xcv = p =k v.

= We consider the problem  max Var(u).
rED, p=kv



Properties of the Kantorovich order
Set MK = {1 =« v}. Given DU {v} C Py, we consider the problem

Var(p). 3
DX ar(p) (3)

MK is convex, weakly compact, Wa-closed, but not W,-compact
= existence of solution is assured if e.g. D is Wh-compact.



Properties of the Kantorovich order
Set MK = {1 =« v}. Given DU {v} C Py, we consider the problem

Var(p). 3
DX ar(p) (3)

MK is convex, weakly compact, Wa-closed, but not W,-compact
= existence of solution is assured if e.g. D is Wh-compact.

Ex. o, = uniform probability over a centered sphere in R? with radius r.
Let v =01, and p= (1= A)o, + Aog for 0 < r < R and A € [0,1]. Then

w3y <= R< My 1+4(r2_r2)(§_1) for each r € [0,1], A € (0,1).

i 7)
Graph of r= 0.5, R = LV IE =) WA Graph of r= 0.9, R = LVIFE- AT GA—T
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Relationship with principal component analysis (PCA)
V,, = set of m-dimensional subspaces of R9. Consider the domain

Dm={pn € Po|p(L) =1 for some L € V,,}.
Theorem 2. For L € V,,, the solution to the problem max  Var(u)

n=ky, p(L)=1
is uniquely given by the orthogonal projection (push-forward) of v onto L.
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= PCA is a special case of the weak formulation (3) wrt the domain D;.
To see this, we recall that the first principal component is defined as a
direction that maximizes the variance of the projected data. Theorem 2
shows that the first principal component can be given by any L; € V}

satisfying p1(Ly) = 1 for some puy solving the problem  max  Var(pu),
wEDy, p=kv
in which case p; is the orthogonal projection of the data v onto Lj.
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is uniquely given by the orthogonal projection (push-forward) of v onto L.

= PCA is a special case of the weak formulation (3) wrt the domain D;.
To see this, we recall that the first principal component is defined as a
direction that maximizes the variance of the projected data. Theorem 2
shows that the first principal component can be given by any L; € V}

satisfying p1(Ly) = 1 for some puy solving the problem  max  Var(pu),
wEDy, p=kv

in which case p; is the orthogonal projection of the data v onto Lj.

Inductively, given the first / — 1 principal components Ly, ..., L;_1, the ith
principal component L; is defined as a direction orthogonal to Ly,...,L;_1
that maximizes the variance of the projected data. Again by Theorem 2,
the ith principal component can be given by any L; € V; satisfying

wi(L;) =1 for some p; solving the problem max  Var(u), where
HED i, p=kV

Dyi={upeDi|3LeVyst. LLLVj=1,..i—1and u(L)=1}.



Relationship with PCA — nonvanishing noise case
Following Yuxin Chen, Yuejie Chi, Jianging Fan and Cong Ma (2021),
“Spectral Methods for Data Science: A Statistical Perspective”, consider
Y=LU"W+R

where W ~ N(0, I,) is an m-dimensional vector of latent factors,

L* € RY*™ represents a factor loading matrix that is not known a priori,
and R ~ N(0,02l4) stands for random noise not explained by W.
Assume L* = U*A*Y/2 and W and R are independent. Let v = £(Y).

Goal) Estimate the subspace spanned by L* and latent factors W.
= In PCA literature, Im(L*) is referred to as the principal subspace.
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where W ~ N(0, I,) is an m-dimensional vector of latent factors,

L* € RY*™ represents a factor loading matrix that is not known a priori,
and R ~ N(0,02l4) stands for random noise not explained by W.
Assume L* = U*A*Y/2 and W and R are independent. Let v = £(Y).

Goal) Estimate the subspace spanned by L* and latent factors W.
= In PCA literature, Im(L*) is referred to as the principal subspace.

We define the domain D = {u; = L(LW)|L = UAN/?}.

Theorem 3. If v, ~2 v, IN s.t. DN MK # 0 for all n > N, and for any
pr, € argmax Var(p) with L, = UnAY?, we have
nEDNME
LolT — 20U, U7 — L*L*T and 02 — 0% as n— oo,

where 02 = ['|y — p1,(v)|?va(dy) is an estimator of noise variance o2.



Relationship with k-means clustering

The variance maximization problem s.t. the Kantorovich order represents
a different problem than the problem s.t. the convex order, because the
set {p|pu =<k v} can be potentially much bigger than {u | u <c v}.
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Theorem 4. If D = D¥ or DY ., every optimizer yu for ~max  Var(u)
HeED, p=kv

satisfies y <c v, and hence, solves the original problem  max  Var(pu).

HED, p=cv
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Relationship with k-means clustering

The variance maximization problem s.t. the Kantorovich order represents
a different problem than the problem s.t. the convex order, because the
set {p|pu =<k v} can be potentially much bigger than {u | u <c v}.

However, we question if we are essentially addressing a different problem.

X,E]R u; >0, Zu,—l}.

i=1

k:{u\lspt(u)|<k}={ ZUI xi

Theorem 4. If D = D¥ or DY ., every optimizer yu for ~max  Var(u)
HeED, p=kv

satisfies y <c v, and hence, solves the original problem  max  Var(pu).
HED, p=cv

Corollary. max  Var(u) is equivalent to the k-means problem
neDX, p=kv

min  min /|x—y|2d7r(x,y).

neDK weM(p,v)

Proof. min min /|x—y|2 7= min  min /|X—y\2d7r. O
neDk meN(p,v) neDk meM(p,v)
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Reformulation into bivariate optimization problem
The formulation  max  Var(u) incorporates important data reduction
neD, p=kv
approaches, such as PCA and k-means, by selecting an appropriate D.
= How to solve the problem effectively? Recall that for u, v € Po(RY):

u =k v < K(p,v) > Var(n) where K(p,v) = mn(ax )IEMX, Y).
well(p,v
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Reformulation into bivariate optimization problem
The formulation  max  Var(u) incorporates important data reduction
neD, p=kv
approaches, such as PCA and k-means, by selecting an appropriate D.
= How to solve the problem effectively? Recall that for u, v € Po(RY):

u =k v < K(p,v) > Var(n) where K(p,v) = mn(ax )IEMX, Y).
well(p,v

Az p = dilation of u by A € R. Thatis, L(X) = u = Azp = L(AX).

Theorem 5. Assume D is a cone: Ayp € D for any p € D and X > 0.

Then the problem  max  Var(u) is equivalent to
HED, p=kv

max  E.(X,Y) (4)
£€D, Var(§)<1
men(e.w)

in the sense that for any solution (§*,7*) to (4), K(&*,v)x&* solves (3).

Conversely, for any solution u* of (3), (\/\ﬁ p*, ) solves (4) with
ar(p*) 4

1

any OT 7* between
Var(pu*)

w* and v.
#

11



Iterative linear optimization

The constraint pu <« v has been removed from max  E (X,Y)
€eD, Var(§)<1

men(&,v)
= enables iterative linear optimization in (&, 7).

n

K
Set v = Zvjéyj, Dk = {,u = Zu;éxi
i=1

Jj=1

() = {7 = ()

J

K
XiERd;Ui207ZUi:1}a

i=1

ek

yeuesl

k
7 is a proby matrix with ij = Vj}.
i=1

1
1
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Iterative linear optimization
If D = D for example, we may iterate:

Step 1. Given 7 € MN(-,v), write u; = >, m; for i =1, ..., k. Solve

max E mii(xi, ¥j) s.t. E u,-|x,-|2:17 E uix; = 0.
i i

(X15eeesxk)

Step 2. Given (xq, ..., xk) € (R9)X, solve

2
max E mii(xi, y) s.t. up= E Tijs E uilxi|? =1, E uix; = 0.
meN(-,v) < - ; -
J i i

= Steps 1 and 2 monotonically increase the objective ), ; m;(xi, ;).



Numeric examples

Initial position

1 iteration

104 10
05 05
0.0 0.0
—o0.5 -05
-1.01 -1.0
15 -lo -05 00 05 10 15 20 15 -0 -05 00 05 10 15 20
4 iterations 10 iterations
104
0.54
00
—o.5
~104
-5 -10 -05 00 05 10 15 20 -15 -10 =05 00 05 10 15 20

Figure: Convergence towards the prior distribution. n = 10000, kK = 100, d = 2.




Numeric examples

0.8

0.6 4

0.4

0.24

0.0 4

—=0.2 4 r

=04

—0.6

Figure: High-dimension arc example: n = 10000, kK = 100, d = 30.
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Numeric examples

Initial position 1 iteration
07 07
L g | Y
0.6 06
- \ — {
05 \ ] 05 - L]
0.4 L Yo F 04 r "
- — x\ /- - 4
031 3 J P 03 = o
\
02+ 02
" Y . -~ .
01 " 01 -
00 00 o
0.0 02 04 0.6 08 1.0 0.0 02 04 0.6 08 10
4 iterations 10 iterations
07 07
. ./ » e/
0.6 4 - 0.6 a
- ¥ . ¢
0.5 . s 05 N L]
0.4 L 04 L
- / \ /
03 4 - 03 \ _
02+ 02
¢ . ¢ .
01 . 01 w
004 / 004 J
0.0 02 04 0.6 08 10 0.0 02 04 0.6 08 10

Figure: Zigzag example with transport lines. n =20, k =5, d =

16



Numeric examples

Initial position 1 iteration
» [
075 . 075 1
- \ =
050 0.50
0.254 A 0.25 [ ]
0.00 1 - 0.00 '
—0.25 4 =" —0.25 f L
—0.50 -0.50
= u -
—0.75 4 -0.75 -l i
L —
-1.001 -1.00 -
-0 -05 00 05 10 15 -0  -05 00 05 10 15
4 iterations 10 iterations
[ [
075 L) 075 n
e e
0.50 1 0.50
0.25 4 ] 0.25 ]
0.00 1 ‘ 0.00 1
—0.25 ? -0.25 &
—0.50 -0.50
L] - M -
~0.75 ot af -0.75 —t o
.- B A o - B . o
~1.00 4 e -1.00 ———
-10  -05 00 05 10 15 -10 =05 00 05 10 15

Figure: Arc example with transport lines. n =20, k =5, d =2
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Summary

- We propose a denoising approach of data v in which we maximize
variance of the first marginal p of a martingale coupling 7 € M(u,v)

<= maximize Var(u) for u dominated by data v in convex order.

- The approach is adaptable and versatile
—> Changing the domain D yields different problems.

- Due to the computational complexity and inflexibility of the convex
order, we propose using a weaker domination, the Kantorovich order.

—> For some domains D, solutions p under pu =y v satisfies pu <¢ v.

= = allows us to reformulate into a bivariate optimization problem.

- Effective numerical schemes tailored to each domain D are desired.
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