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Assumption on Data distribution

P = P(Rd) = probabilities over Rd with finite second moments

P0 = centered probabilities (
∫
x dµ(x) = 0) with finite 2nd moments

X ∼ ρ,Y ∼ ν,R ∼ ε s.t. Y = X + R and E[R|X ] = 0 (ρ, ν, ε ∈ P0)

Want to recover ρ from the observed data ν which is disturbed by ε.

We suppose that ρ belongs to a particular domain D (⊆ P0).

Joint distribution π = L(X ,Y ) of ρ, ν is a martingale : Eπ[Y |X ] = X

M(µ, ν) = set of all martingale couplings of µ, ν

Π(µ, ν) = set of all couplings of µ, ν

Given data ν and search domain D, we look for µ ∈ D solving

min
µ∈D

min
π∈M(µ,ν)

Eπ[|X − Y |2]. (1)

⇒ We try to summarize ν by an optimal µ∗ within the domain D.
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Domain examples
Probabilities on curves and surfaces. Let Ω ⊆ Rd be compact.

Ck,L =
{
α : [0,T ]→ Ω

∣∣α ∈ C k , |α(k)| ≤ M, |α(k)(t)− α(k)(s)| ≤ L|t − s|
}
,

D =
{
µ ∈ P(Rd)

∣∣ spt(µ) ⊆ Im(α) for some α ∈ Ck
}
.

=⇒ D is closed under the Wasserstein metric W2

Probabilities on k points (with free weights). Given k ∈ N, define

Dk =
{
µ
∣∣ | spt(µ)| ≤ k

}
=

{
µ =

k∑
i=1

uiδxi

∣∣∣∣ xi ∈ Rd , ui ≥ 0,
k∑

i=1

ui = 1

}
=⇒ Dk relates our problem (1) to the k-means clustering problem.

Probabilities on k points with uniform weights.

Dk
Uni =

{
µ =

1

k

k∑
i=1

δxi

∣∣∣∣ xi ∈ Rd

}
Probabilities on monotone increasing curves.
... Domains are non-convex in general.
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Variance maximization s.t. Convex order constraint

For any π ∈M(µ, ν), since Eπ[XY ] = Eµ[XEπ[Y |X ]] = Eµ[|X |2],

Eπ[|X − Y |2] = Eν [|Y |2]− Eµ[|X |2]

= Var(ν)− Var(µ) if µ, ν ∈ P0.

Since the (empirical) data ν is given and fixed, the problem

min
µ∈D

min
π∈M(µ,ν)

Eπ[|X − Y |2]

can be equivalently formulated as

max
µ∈D, µ�Cν

Var(µ) (2)

µ, ν are in convex order ⇔ µ �C ν ⇔
∫
fdµ ≤

∫
fdν ∀convex function f

⇔M(µ, ν) is nonempty (Strassen’s theorem)
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Existence of solutions and Convergence as noise vanishes

Theorem 1. i) If D ⊆ P(Rd) is W2-closed, then (2) attains a solution.

ii) Let µ∗ be a solution to (2). Then for any ρ ∈ D with ρ �C ν, we have

W2(µ∗, ρ) ≤
√

Var(ν)− Var(ρ) + W2(ν, ρ).

Consequently, W2(µ∗, ρ)→ 0 as W2(ν, ρ)→ 0, i.e., as the noise vanishes.

Proof. i) The set Mν = {µ |µ �C ν} is W2-compact, so is D ∩Mν .

ii) Recall W2(µ, ν) = min
π∈Π(µ,ν)

√
Eπ[|X − Y |2].

W2(µ∗, ρ) ≤ W2(µ∗, ν) + W2(ν, ρ)

≤
√

Eπ[|X − Y |2] + W2(ν, ρ) for any π ∈M(µ∗, ν)

=
√

Var(ν)− Var(µ∗) + W2(ν, ρ)

≤
√

Var(ν)− Var(ρ) + W2(ν, ρ).
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A weak version of the convex order

In the problem max
µ∈D, µ�Cν

Var(µ), it is difficult to check µ �C ν if d ≥ 2.

=⇒ We introduce a weaker version of convex order.

Definition. We say µ, ν ∈ P(Rd) are in Kantorovich order, µ �K ν, if

max
π∈Π(µ,ν)

Eπ〈X ,Y − X 〉 ≥ 0 ⇐⇒ K (µ, ν) ≥ Eµ|X |2

⇐⇒ W2(µ, ν)2 ≤ Eν |Y |2 − Eµ|X |2

where K (µ, ν) := max
π∈Π(µ,ν)

Eπ〈X ,Y 〉 = max
π∈Π(µ,ν)

∫
〈x , y〉dπ(x , y).

Note. µ �C ν =⇒ µ �K ν.

=⇒ We consider the problem max
µ∈D, µ�Kν

Var(µ).
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Properties of the Kantorovich order
Set MK

ν = {µ |µ �K ν}. Given D ∪ {ν} ⊆ P0, we consider the problem

max
µ∈D∩MK

ν

Var(µ). (3)

MK
ν is convex, weakly compact, W2-closed, but not W2-compact

=⇒ existence of solution is assured if e.g. D is W2-compact.

Ex. σr = uniform probability over a centered sphere in Rd with radius r .

Let ν = σ1, and µ = (1− λ)σr + λσR for 0 ≤ r ≤ R and λ ∈ [0, 1]. Then

µ �K ν ⇐⇒ R ≤ 1+
√

1+4(r−r2)( 1
λ−1)

2 for each r ∈ [0, 1], λ ∈ (0, 1).

Figure
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Relationship with principal component analysis (PCA)
Vm = set of m-dimensional subspaces of Rd . Consider the domain

Dm = {µ ∈ P0 |µ(L) = 1 for some L ∈ Vm}.

Theorem 2. For L ∈ Vm, the solution to the problem max
µ�Kν, µ(L)=1

Var(µ)

is uniquely given by the orthogonal projection (push-forward) of ν onto L.

⇒ PCA is a special case of the weak formulation (3) wrt the domain D1.
To see this, we recall that the first principal component is defined as a
direction that maximizes the variance of the projected data. Theorem 2
shows that the first principal component can be given by any L1 ∈ V1

satisfying µ1(L1) = 1 for some µ1 solving the problem max
µ∈D1, µ�Kν

Var(µ),

in which case µ1 is the orthogonal projection of the data ν onto L1.

Inductively, given the first i − 1 principal components L1, ..., Li−1, the ith
principal component Li is defined as a direction orthogonal to L1, ..., Li−1

that maximizes the variance of the projected data. Again by Theorem 2,
the ith principal component can be given by any Li ∈ V1 satisfying
µi (Li ) = 1 for some µi solving the problem max

µ∈D1,i , µ�Kν
Var(µ), where

D1,i := {µ ∈ D1 | ∃L ∈ V1 s.t. L ⊥ Lj ∀j = 1, ..., i − 1 and µ(L) = 1}.
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Relationship with PCA — nonvanishing noise case
Following Yuxin Chen, Yuejie Chi, Jianqing Fan and Cong Ma (2021),
“Spectral Methods for Data Science: A Statistical Perspective”, consider

Y = L∗W + R

where W ∼ N (0, Im) is an m-dimensional vector of latent factors,
L∗ ∈ Rd×m represents a factor loading matrix that is not known a priori,
and R ∼ N (0, σ2Id) stands for random noise not explained by W .

Assume L∗ = U∗Λ∗1/2 and W and R are independent. Let ν = L(Y ).

Goal) Estimate the subspace spanned by L∗ and latent factors W .

⇒ In PCA literature, Im(L∗) is referred to as the principal subspace.

We define the domain D = {µL = L(LW ) | L = UΛ1/2}.

Theorem 3. If νn
W2−−→ ν, ∃N s.t. D∩MK

νn 6= ∅ for all n ≥ N, and for any

µLn ∈ argmax
µ∈D∩MK

νn

Var(µ) with Ln = UnΛ
1/2
n , we have

LnL
T
n − σ2

nUnU
T
n → L∗L∗T and σ2

n → σ2 as n→∞,

where σ2
n =

∫
|y − pLn(y)|2νn(dy) is an estimator of noise variance σ2.
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Relationship with k-means clustering
The variance maximization problem s.t. the Kantorovich order represents
a different problem than the problem s.t. the convex order, because the
set {µ |µ �K ν} can be potentially much bigger than {µ |µ �C ν}.

However, we question if we are essentially addressing a different problem.

Dk =
{
µ
∣∣ | spt(µ)| ≤ k

}
=

{
µ =

k∑
i=1

uiδxi

∣∣∣∣ xi ∈ Rd , ui ≥ 0,
k∑

i=1

ui = 1

}
.

Theorem 4. If D = Dk or Dk
Uni, every optimizer µ for max

µ∈D, µ�Kν
Var(µ)

satisfies µ �C ν, and hence, solves the original problem max
µ∈D, µ�Cν

Var(µ).

Corollary. max
µ∈Dk , µ�Kν

Var(µ) is equivalent to the k-means problem

min
µ∈Dk

min
π∈Π(µ,ν)

∫
|x − y |2dπ(x , y).

Proof. min
µ∈Dk

min
π∈Π(µ,ν)

∫
|x − y |2dπ = min

µ∈Dk
min

π∈M(µ,ν)

∫
|x − y |2dπ.
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Reformulation into bivariate optimization problem
The formulation max

µ∈D, µ�Kν
Var(µ) incorporates important data reduction

approaches, such as PCA and k-means, by selecting an appropriate D.

⇒ How to solve the problem effectively? Recall that for µ, ν ∈ P0(Rd):

µ �K ν ⇔ K (µ, ν) ≥ Var(µ) where K (µ, ν) = max
π∈Π(µ,ν)

Eπ〈X ,Y 〉.

λ#µ = dilation of µ by λ ∈ R. That is, L(X ) = µ =⇒ λ#µ = L(λX ).

Theorem 5. Assume D is a cone: λ#µ ∈ D for any µ ∈ D and λ ≥ 0.

Then the problem max
µ∈D, µ�Kν

Var(µ) is equivalent to

max
ξ∈D,Var(ξ)≤1
π∈Π(ξ,ν)

Eπ〈X ,Y 〉 (4)

in the sense that for any solution (ξ∗, π∗) to (4), K (ξ∗, ν)#ξ
∗ solves (3).

Conversely, for any solution µ∗ of (3),
(

1√
Var(µ∗) #

µ∗, π∗
)

solves (4) with

any OT π∗ between 1√
Var(µ∗) #

µ∗ and ν.
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µ∈D, µ�Kν

Var(µ) is equivalent to

max
ξ∈D,Var(ξ)≤1
π∈Π(ξ,ν)

Eπ〈X ,Y 〉 (4)

in the sense that for any solution (ξ∗, π∗) to (4), K (ξ∗, ν)#ξ
∗ solves (3).

Conversely, for any solution µ∗ of (3),
(

1√
Var(µ∗) #

µ∗, π∗
)

solves (4) with

any OT π∗ between 1√
Var(µ∗) #

µ∗ and ν.
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Iterative linear optimization

The constraint µ �K ν has been removed from max
ξ∈D,Var(ξ)≤1
π∈Π(ξ,ν)

Eπ〈X ,Y 〉

⇒ enables iterative linear optimization in (ξ, π).

Set ν =
n∑

j=1

vjδyj , Dk =

{
µ =

k∑
i=1

uiδxi

∣∣∣∣ xi ∈ Rd , ui ≥ 0,
k∑

i=1

ui = 1

}
,

Π(·, ν) :=

{
π = (πij)i=1,...,k

j=1,...,n

∣∣∣∣π is a proby matrix with
k∑

i=1

πij = vj ∀j
}
.
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Iterative linear optimization

If D = Dk for example, we may iterate:

Step 1. Given π ∈ Π(·, ν), write ui =
∑

j πij for i = 1, ..., k. Solve

max
(x1,...,xk )

∑
i, j

πij〈xi , yj〉 s.t.
∑
i

ui |xi |2 = 1,
∑
i

uixi = 0.

Step 2. Given (x1, ..., xk) ∈ (Rd)k , solve

max
π∈Π(·,ν)

∑
i, j

πij〈xi , yj〉 s.t. ui =
∑
j

πij ,
∑
i

ui |xi |2 = 1,
∑
i

uixi = 0.

⇒ Steps 1 and 2 monotonically increase the objective
∑

i, j πij〈xi , yj〉.
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Numeric examples

Figure: Convergence towards the prior distribution. n = 10000, k = 100, d = 2.
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Numeric examples

Figure: High-dimension arc example: n = 10000, k = 100, d = 30.
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Numeric examples

Figure: Zigzag example with transport lines. n = 20, k = 5, d = 2
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Numeric examples

Figure: Arc example with transport lines. n = 20, k = 5, d = 2
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Summary

· We propose a denoising approach of data ν in which we maximize
variance of the first marginal µ of a martingale coupling π ∈M(µ, ν)

⇐⇒ maximize Var(µ) for µ dominated by data ν in convex order.

· The approach is adaptable and versatile

=⇒ Changing the domain D yields different problems.

· Due to the computational complexity and inflexibility of the convex
order, we propose using a weaker domination, the Kantorovich order.

=⇒ For some domains D, solutions µ under µ �K ν satisfies µ �C ν.

=⇒ �K allows us to reformulate into a bivariate optimization problem.

· Effective numerical schemes tailored to each domain D are desired.
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