
Wasserstein Mirror Gradient Flows as the Limit
of the Sinkhorn Algorithm

Nabarun Deb
University of Chicago

Summer School on Optimal Transport,
Stochastic Analysis and Applications to Machine Learning

Korea Advanced Institute of Science and Technology (KAIST)

Joint work with Young-heon Kim, Soumik Pal, Geoffrey Schiebinger

0 / 27



Entropy regularized OT

Marginals e−f , e−g densities. Minimize over coupling Π, i.e., all
γ ∈ Π the first and second marginals of γ are e−f and e−g

respectively,

W2
2(e

−f , e−g ) := inf
γ∈Π

[∫
∥y − x∥2 dγ

]
.

Monge solutions are highly degenerate; supported on a graph, and
hard to compute.

Entropy as a measure of degeneracy:

Ent(h) :=

{∫
h(x) log h(x)dx , for density h,

∞, otherwise.

Example: Entropy of N(0, σ2) is − log σ+ constant.
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Entropic regularization

Figure: Image by M. Cuturi

Föllmer ’88, Cuturi ’13, Gigli ’19 ... suggested penalizing MK OT
with entropy.

EOTϵ(e
−f , e−g ) = inf

γ∈Π

[∫
∥y − x∥2 dγ + ϵEnt(γ)

]
.
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Structure of the solution

The optimal coupling (Rüschendorf & Thomsen ’93) γϵ must be of
the form

γϵ(x , y) = exp

(
− 1

2ϵ
∥y − x∥2 − 1

ϵ
uϵ(x)− 1

ϵ
v ϵ(y)− f (x)− g(y)

)
.

uϵ, v ϵ - Schrödinger potentials. Unique up to constant.

Typically not explicit. Determined by marginal constraints∫
γϵ(x , y)dy = e−f (x),

∫
γϵ(x , y)dx = e−g(y).
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Sinkhorn/IPFP algorithm

Initialize a distribution γϵ
0 on Rd × Rd“appropriately”. Iteratively fit

alternating marginals.

At every odd step, say γϵ
2k+1, the X marginal is e−f .

At every even step, say γϵ
2k the Y marginal is e−g . So, e.g.,

γϵ
1(x , y) = e−f (x) γϵ

0(x , y)∫
y
γϵ
0(x , y) dy

, γϵ
2(x , y) = e−g(y) γϵ

1(x , y)∫
x
γϵ
1(x , y) dx

Extract the sequence of X -marginals from even steps.

(ρϵk , k = 1, 2, 3, . . .) .

In fact, ρϵk characterizes the corresponding γϵ
k via a variational

problem.

How fast does ρϵk converge to e−f when ε → 0 appropriately scaled
with k → ∞? For the case ε > 0, see Ghosal and Nutz, 2022,
Conforti et al., 2023, ...
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The “Scaling” limit

By Berman ’20 and Léger ’20, it follows:

(H∗
ϵ )

′(ρϵk+1)− (H∗
ϵ )

′(ρϵk) = −KL′(ρk |e−f ).

Here Hϵ(·) is itself characterized by a variational problem, H∗
ϵ is the

dual, and ′ is used for first variation.

No missing ϵ on RHS

This reminds us of usual gradient descent:

xϵk+1 − xϵk = −ϵ∇F (xϵk).

(Cauchy problem) By Santambrogio ’16, with k = t/ϵ and ϵ → 0,
we have xϵt/ϵ → x̃t where

d

dt
x̃t = −∇F (x̃t).

x̃t → x̃∞ (optimizer of F ) usually exponentially fast if F is λ-convex.
Helps to speed up convergence, understand regularization, etc.
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Our approach

  

 

ε → 0 

ρkε 

Embed the sequence in time steps ϵ.

Find the limiting absolutely continuous curve (ρt , t ≥ 0),

ρt = lim
ϵ→0

ρϵt/ϵ.

Describe this curve as a “mirror gradient flow”.

Use gradient flow techniques to determine exponential rates of
convergence under assumptions.

Come up with a Mckean-Vlasov diffusion whose marginals follow the
same mirror gradient flow.
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Euclidean mirror gradient flows
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Diffeomorphisms by convex gradients

Figure: Image of a diffeomorphism by G. Peyré

u : Rd → R differentiable strictly convex.

x ↔ xu = ∇u(x) creates mirror coordinates by duality.

Two notions of gradients. F : Rd → R.

∇xF (x), ∇xuF (x) :=
(
∇2u(x)

)−1 ∇xF (x).

Usual case u(x) = 1
2 ∥x∥

2.
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Mirror gradient flow ODEs

Mirror gradient flows have two equivalent ODEs. Initialize x0.

Flow of the mirror coordinate.

∇u(xk+1)−∇u(xk) = −ϵ∇F (xk) ẋu
t =

d

dt
∇u(xt) = −∇xF (xt)

Flow of the primal/canonical coordinate.

xk+1 − xk = −ϵ∇xuF (xk) ẋt = −∇xuF (xt) = −(∇2u(xt))
−1∇xF (xt)

Gradient flow in a Hessian Riemannian manifold with a metric tensor
given by the Hessian (

∇2u(x)
)−1

= ∇2u∗(xu).

What to expect? Interpret Sinkhorn as a mirror descent on the
space of probability measures. What are F and u?
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Examples

d = 1, F (x) = x2/2, x0 = 1.

u(x) = x2/2. Usual gradient flow converges exponentially.

ẋt = −xt , xt = e−t .

u(x) = x4. Mirror flow converges in finite time.

ẋt = − 1

12xt
, xt =

√
(1− t/6)+.

u(x) = 1/x . Mirror flow converges polynomially.

ẋt = −1

2
x4t , xt = (1 + 3t/2)−1/3.

For analogy, we say a mirror gradient flow is characterized by an
objective function F and a mirror map u.
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ẋt = − 1

12xt
, xt =

√
(1− t/6)+.

u(x) = 1/x . Mirror flow converges polynomially.
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The limit of Sinkhorn is a mirror gradient flow

Recall that we wanted to study the limit of ρϵk (X marginals from
Sinkhorn) for k = t/ϵ, i.e.,

lim
ϵ→0

ρϵt/ϵ =??

Theorem (DKPS ’23)

Under regularity assumptions, limϵ→0 ρ
ϵ
t/ϵ = ρt where ρt is the

Wasserstein mirror flow with

Objective function: F (ρ) = KL(ρ|e−f )

Mirror map: U(ρ) = 1
2W

2
2 (ρ, e

−g )

How do we describe Wasserstein mirror flows?
Parabolic PDE+continuity equation

Do we still (potentially??) need to make sense of the Hessian of
U(·)?
No!
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Wasserstein mirror gradient flows
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Wasserstein gradient flow recap

(Otto ’98) Wasserstein space W2(Rd) is a formal Riemannian
manifold.

Tangent space at ρ

{∇ϕ, ϕ ∈ C∞
c }

L2(ρ)
.

F : W2 → R. Wasserstein gradient is a Riemannian gradient.

∇WF (ρ) = ∇
(
δF

δρ

)
.

Here δF
δρ denotes the first variation, i.e., d

dtF (ρ+ tν)

∣∣∣∣
t=0

=
∫

δF
δρ dν.

Wasserstein gradient flow solves continuity equation.

ρ̇t +∇ · (vtρt) = 0, vt = −∇WF (ρt).

vt often called velocity. Belongs in the tangent space.

A gradient descent analogy: d
dt xt = −∇F (xt). Effectively usual

gradient replaced with ∇W to get vt .
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Mirror, mirror on the ...

Special choice of mirror function/map on W2. Fix density e−g .

U(ρ) :=
1

2
W2

2

(
ρ, e−g

)
.

(Generalized) Geodesically convex. Generates mirror coordinate:

ρ ⇐⇒ x −∇uρ(x)︸ ︷︷ ︸
Kantorovich potential

= ∇WU(ρ),

where ∇uρ(·) is the Brenier map transporting ρ to e−g , i.e., uρ is
convex and (∇uρ)#ρ = e−g or, if X ∼ ρ, then ∇uρ(X ) ∼ e−g .

Recall Euclidean mirror descent: Given a convex mirror map u, the
mirror coordinates are given by ∇u(x).

Natural analog would be to describe two equivalent fows — one for
probability measures (ρt)t≥0 (primal coordinate) and another for
Brenier porentials (∇uρt )t≥0 ≡ (∇ut)t≥0 (mirror coordinate)
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ρ ⇐⇒ x −∇uρ(x)︸ ︷︷ ︸
Kantorovich potential

= ∇WU(ρ),

where ∇uρ(·) is the Brenier map transporting ρ to e−g , i.e., uρ is
convex and (∇uρ)#ρ = e−g or, if X ∼ ρ, then ∇uρ(X ) ∼ e−g .

Recall Euclidean mirror descent: Given a convex mirror map u, the
mirror coordinates are given by ∇u(x).

Natural analog would be to describe two equivalent fows — one for
probability measures (ρt)t≥0 (primal coordinate) and another for
Brenier porentials (∇uρt )t≥0 ≡ (∇ut)t≥0 (mirror coordinate)
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Mirror flow PDE and continuity equations

Mirror gradient flow PDE for the potential (mirror coordinate).
Initialize at u0.

∂

∂t
∇WU(ρt) = −∇WF (ρt)

=⇒ ∇u̇t = ∇WF (ρt), ∇ut#ρt = e−g .

Euclidean case: ∂
∂t∇u(xt) = −∇F (xt).

Mirror gradient flow continuity equation (primal coordinates).
Initialize at ρ0.

ρ̇t +∇ · (vtρt) = 0, vt = −
(
∇2ut

)−1∇WF (ρt) = −∇xut

δF

δρ
(ρt).

where ∇ut is the Brenier map from ρt to e−g , ∇ut#ρt = e−g .
Euclidean case: ẋt = −(∇2u(xt))

−1∇xF (xt)
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−1∇xF (xt)

15 / 27



Example 1

Entropy. F (ρ) =
∫
ρ(x) log ρ(x)dx . Take d = 1.

Take ρ0 = e−g = N(0, 1).

PDE for the Brenier potential

∇u̇t(x) = log ρt(x) + 1.

Solution ρt = N(0, (1 + t)2).

Compare with the heat flow = Wasserstein grad flow.
µt = N(0, 1 + t).

Faster convergence for mirror flow.
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Example 2 (Sinkhorn flow)

The mirror flow of F (ρ) = KL(ρ|e−f ) can be faster than usual
Fokker-Planck.

Take ρ0 = e−g = N(0, η2), for η > 0.

Take e−f = N(0, 1).

Both Fokker-Planck and Wassertein mirror flow admit Gaussian
solutions of the form

N(0, σ2
F ,t), N(0, σ2

M,t).

If η < 1, then

lim
t→∞

|1− σ2
F ,t |

|1− σ2
M,t |

= ∞,

exponentially.
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Example 3 (Sinkhorn flow)

The mirror flow of F (ρ) = KL(ρ|e−f ) can be faster than usual
Fokker-Planck with multivariate Gaussians.

Take ρ0 = N(0, Id) and e−g = N(0,Θ).

Take e−f = N(0,Σ). Assume Σ and Θ commute, both are
invertible.

Both Fokker-Planck and Wassertein mirror flow admit Gaussian
solutions of the form

N(0,ΣF ,t), N(0,ΣM,t).

If ∥Σ−1Θ∥op < 1, then

lim
t→∞

∥Σ− ΣF ,t∥op
∥Σ− ΣM,t∥op

= ∞,

exponentially.
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Interpreting mirror flow velocity

Consider Wasserstein gradient flow of F , i.e.,

∂tρt +∇ · (vtρt) = 0, vt = −∇
(
δF

δρ

)
ρ=ρt

.

If Tt+h is the transport map from ρt to ρt+h, then

Tt+h = Id+ hvt + o(|h|).

Consider Wasserstein mirror flow of F , i.e.,

∂tρt +∇ · (vtρt) = 0, vt = −∇xut

(
δF

δρ

)
.

If Tt is the transport map from e−g to ρt , then

Tt+h = Tt + hvt(Tt) + o(|h|).
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Recall Linearized OT

Given probability measures µ1, µ2, ν, let T1#ν = µ1 and T2#ν = µ2

(T1, T2 are optimal transport maps).

LOT defn.

LOTν(µ1, µ2) = ∥T1 − T2∥L2(ν).

For Wasserstein mirror flows ...

LOT metric derivative

lim
h→0+

1

h
LOTe−g (ρt+h, ρt) = ∥vt∥L2(ρt) .

For usual gradient flow, the above holds with usual Wasserstein distance.

20 / 27



Recall Linearized OT

Given probability measures µ1, µ2, ν, let T1#ν = µ1 and T2#ν = µ2

(T1, T2 are optimal transport maps).

LOT defn.

LOTν(µ1, µ2) = ∥T1 − T2∥L2(ν).

For Wasserstein mirror flows ...

LOT metric derivative

lim
h→0+

1

h
LOTe−g (ρt+h, ρt) = ∥vt∥L2(ρt) .

For usual gradient flow, the above holds with usual Wasserstein distance.

20 / 27



Recall Linearized OT

Given probability measures µ1, µ2, ν, let T1#ν = µ1 and T2#ν = µ2

(T1, T2 are optimal transport maps).

LOT defn.

LOTν(µ1, µ2) = ∥T1 − T2∥L2(ν).

For Wasserstein mirror flows ...

LOT metric derivative

lim
h→0+

1

h
LOTe−g (ρt+h, ρt) = ∥vt∥L2(ρt) .

For usual gradient flow, the above holds with usual Wasserstein distance.

20 / 27



Recap of Sinkhorn

Initialize “appropriately”. Iteratively fit alternating marginals.

At every odd step the X marginal is e−f .

At every even step the Y marginal is e−g .

Extract the sequence of X -marginals from even steps.

(ρϵk , k = 1, 2, 3, . . .) .

Find the limiting absolutely continuous curve (ρt , t ≥ 0),

ρt = lim
ϵ→0

ρϵt/ϵ.

Describe this curve as a “Wasserstein mirror gradient flow”.

Use gradient flow techniques to determine exponential rates of
convergence under assumptions.

Come up with a Mckean-Vlasov diffusion whose marginals follow the
same mirror gradient flow.
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The limit of Sinkhorn is a mirror gradient flow

Theorem (DKPS ’23) Under regularity assumptions on the parabolic
MA,

u̇t(x) = f (x)− g (∇ut(x)) + log det∇2ut(x).

the limiting curve of the X marginals is a solution of the Sinkhorn
PDE.

ρ̇t +∇ · (vtρt) = 0, vt = −∇xut (f + log ρt) .

Moreover,
W2

2(ρ
ϵ
t/ϵ, ρt) = O(ε).

In particular, it is a mirror gradient flow of F (ρ) = KL(ρ | e−f ) with
the mirror given by U(ρ) = 1

2W
2
2(ρ, e

−g ).

A symmetric statement holds for the sequence of Y marginals.

The assumptions hold when e−f and e−g are supported on a Torus,
f and g have two uniformly continuous derivatives.

The parabolic PDE occurs in Berman ’20 where the author studies
limit of the Sinkhorn potentials.
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Exponential rate of convergence

Theorem (DKPS ’23) Suppose e−f satisfies logarithmic Sobolev
inequality. Also suppose that the solution of the parabolic MA satisfies

inf
t
inf
x

(
∇2ut(x)

)−1 ≥ λI ,

then exponential convergence for the Sinkhorn PDE.

There are conditions known where our assumptions are satisfied.
See, e.g., Berman ’20.

The proof is a standard gradient flow argument.
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A McKean-Vlasov interpretation

Consider the mirror flow for an objective function F (·) and with mirror
map 1

2W
2
2 (·, e−g ).

“Sinkhorn like” PDE is the marginal law of the following diffusion.

dXt =

(
− ∂

∂xut
δF

δρt
(Xt)−

∂g

∂xut
(X ut

t )

)
dt +

√
2
∂Xt

∂X ut
t

dBt , (0.1)

where

Xt has density ρt .

(∇ut)#ρt = e−g .

Diffusion matrix at time t is

2
∂x

∂xut
= 2

(
∇2ut(x)

)−1
.

Different from mirror Langevin diffusion (Ahn-Chewi ’21), as ut depends
on law(Xt).
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Several open questions

Replace KL by another divergence. Does this have any algorithmic
potential?

How to choose e−g in practice?

Other mirror functions than the squared Wasserstein distance.

One can can formally write the resulting Hessian geometry. But
there are singularities.

⟨v1, v2⟩ρ =

∫
vT
1 (x)

(
∇2uρ(x)

)−1
v2(x)ρ(dx).

Build a JKO like scheme for this Hessian geometry. See
Rankin-Wong ’23 for some related constructions of the
Bregman-Wasserstein divergences.

Do particle systems that follow Euclidean mirror gradient flows
converge to Wasserstein mirror gradient flows?

For more details
https://arxiv.org/pdf/2307.16421.pdf

Thank you. Questions?
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For interpretation

Euclidean gradient flows: Assuming smoothness,

xt+h − xt − hxt = o(|h|)

Wasserstein gradient flows: Recall

ρ̇t +∇ · (vtρt) = 0, vt = −∇WF (ρt).

Assuming smoothness,

W2(ρt+h, (Id + hvt)#ρt) = o(|h|),

Requires vt in the tangent space (satisfied for gradient flows)
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Example 1

Entropy. F (ρ) =
∫
ρ(x) log ρ(x)dx . Take d = 1.

Take ρ0 = e−g = N(0, 1).

PDE for the Brenier potential
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Faster convergence for mirror flow.
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