Lectures on Optimal Transport. May, 2022. KAIST

Young-Heon Kim (Department of Mathematics, University of British Columbia)

Lecture 1 The Monge-Kantorovich problem and duality.

Lecture 2 Wasserstein geometry of the space of probability measures.
Lecture 3 Entropic regularization of optimal transport. Today!

Lecture 4 Application of optimal transport to developmental processes.
Lecture 5 Multimarginal optimal transport. Wasserstein barycentre.

Seminar Optimal Brownian stopping with free target and the supercooled Stefan problem.

Lecture 6 Optimal martingale transport
Lecture 7 Optimal Brownian martingale transport
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Some references for the lectures

v

Lecture 1, 2, and 3:

» Villani: Topics in Optimal Transport. Book
> Villani: Optimal Transport. Old and New. Book
> Cuturi & Payré: Computational Optimal Transport. Book

v

Lecture 4:

» Schiebinger: https://broadinstitute.github.io/wot/tutorial/
» Kim, Lavenant, Schiebinger, Zhang: Towards a mathematical theory of trajectory
inference. https://arxiv.org/abs/2102.09204

Lecture 5
> Cuturi & Payré: Computational Optimal Transport. Book

v

> Kim & Pass: Wasserstein Barycenters over Riemannian manifolds. Adv. in Math. 2017.

Lecture 6

> Ghoussoub, Kim, & Lim: Structure of optimal martingale transport in general
dimensions. Ann. Prob. 2019.
Lecture 7
> Ghoussoub, Kim, & Palmer: PDE Methods For Optimal Skorokhod Embeddings. Calc.
Var. 2019.
» Ghoussoub, Kim, & Palmer: A solution to the Monge transport problem for Brownian
martingales. Ann. Prob. 2021.

> |. Kim &Y. Kim.The Stefan problem and free targets of optimal Brownian martingale
transport. Preprint. 2021

v

v

25



» Computation of Optimal Transport: Entropic regularization
» Schroédinger problem
> Entropy regularized OT has theoretical implications.



Part 1. Entropic regularization of optimal transport
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Computation of Optimal Transport

Find a transport plan = that solves

Minimize 3> 3°7 4 cjmj
subjectto 374 mj = p

P Tip=vi .
mj >0 foralliandj.

» Simpler notation:

min )Zc,-jw,-j
f

meN(p,v -
)

This is a linear programming problem, but, it is still costly to solve if m, n are large.

» the dimension for the decision variable 7 is mn.
» the number of constraints is mn+ m+ n.
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Entropic regularization

[Marco Cuturi 2013]

Solve for small € > 0, r|1|1(|n ) [E cjmjj + cS(w)}
mell(p,v —
ij

> Here
S(7T) = Z[ﬂ,l |Og7T,'j — 71','/']
ij
with the convention that 0log 0 = 0.
> x € [0,00] — xInx — x is strictly convex.
» the function S()] is strictly convex, and

sois m— > cymj + eS().
i

> min c;imii + €S(w) | has unique optimal solution 7€.
TeN(p,v) |:; vy ( ):| q P

» Finding the optimal solution =€ is (relatively) easy. In fact, much faster!



min cimji + eS(m
m€N(p,v) z,]: i+ <S(m)

» The smaller ¢, the closer to the original optimal solution.

Image from the book “Computational Optimal Transport” by Cuturi and Peyré
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Convergence as ¢ — 0T

Theorem
Ase — 0T,

wewlﬂ ) {Z cjmj + (S(w)} — ﬂerllluﬂ ) {Z C,j7r,j:|
¢ — 7 (in weak®)
where 7* is the optimal solution of the original optimal transport problem.

Proof.

See e.g. Theorem 2.7., Carlier et al., SIAM J. Math. Anal. 49 (2017), no. 2,

1385-1418. MR 3635459.
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Duality for entropy regularized OT

>
Minimize Z% cjmjj + €S(m)
subject to 21:1 T = [
Tt i = v
mj >0
is equivalent to
>

min max C S
min ma {Z i + eS(m)

+Z®i |:l11 Zﬂ'lj
i

S-S}
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Duality for entropy regularized OT
Werlzr(iﬂ’y) {z”: cjmj + eS(w)}

m
= min max{ cjmjj + €Sl
e XU: i+ €S(m)

R e Sl

= inf------ justifiabl
rgix gr{]}[ | (justifiable)

= TQE}Z( { z:: dipi + zj:wjvj

+ E1>”(1) [Xm:[c’f — & — Yjlm + 63(77)] }
- i

10/25



Lemma

min [%j[cq — ¢yl + eS(m)]

== e~ tlej—oi—uy)
7

and minimum at = = e~ <= #i=¥)],
Proof.
> F(m):= [-j”[c,j — ¢; — Yj]mj + eS(m) is a strictly convex function.
» Using S(m) = - ;[mjlog mjj — mj], we get (0xF)j; = cj — ¢ — 1 + elog mj, and
Or F(m) = —oo as m; — 0 for any (/, j).
So, it has a minimum when 8, F(7) = 0.
» And

v

OxF = 0iff 7 = e~ L= ¢=¥il,
> Plug-in 7 = e~ <1%—%~% to F(x) and get

_EZ e tlej—di—¥jl
i
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Non essential assumption for simplicity

From now on, for technical simplicity, let us assume that y;, v; > 0 for all /, j.
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Duality

Therefore we get

min cjimii + €S Primal
weN(p,v Z (A (ﬂ—)

,
= max S ipi+ Y wy—e> e clG=%~¥l|  Dual.
’ i j ij

» Weak duality: The primal objective values > the dual objective values.
» For optimal primal solution 7€ and optimal dual solution (¢¢, ¥¢), we have

Z cjmj + eS(r°)

—Z¢,u,+zlp,u,762e ele=of —vy]

» Exercise: The previous lemma implies that

1 e e
€ — efj[c,lfol—z.,/].

if
» So, the dual optimal solution gives the primal optimal solution explicitly!
» Notice that the optimal solution o is positive everywhere. This is in contrast to the

ordinary optimal transport where the optimal transport plan is concentrated along
a special set in the product space.

13
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Optimality condition for the dual

Dual r(r;eg( [Z i + wa”f_ez el[ij¢iwj]:| .
) ; ; 7

» The objective function for dual is strictly concave due to the exponential terms.
> (¢<,1¢) is a dual optimal solution if and only if

)
6¢>w (p,p)=

|:Z bipi + Ziﬁﬂ/]—ez e < [C// di—j] :|
if and only if

1rp. 1€ €
Zef?[cfj oF —¢f] =
7

1 e e
Zef?[cl'/*@f -] _ v
i
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How to find optimal solution

. _ 1 g€ _1ope
We need to find some uf := e e¢l,vf = e <% sothat

1
— = Cjj 1€ /€
e € ’/U,-Vj

satisfies
1g.
Ze*?cllul?vje = pj
j
Ze C’/U V = vj.
which is
€ _ 1]
ui - 710,/ €
>oe ey,
»
v .
e <ius
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Optimality condition

> Define the matrix K = [Kj] = [e_% 7]. Rewrite

Y
1

e~ <Ciye

e iy
Y

uf =

vE= — 1
1
boSe ey

as
Simply,
. - i
Hi U= —"—
U= v
"KL Kv
vj V= -
=4 ==
gl [KTL—j]j K'u
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[Sinkhorn algorithm, 1964]

—

o) def

ST ()
g def T
KTﬁ(/+1)

v

Send (u), vD) to (ul+1), v(D) then to (u(+1), v(+1)),

At the limit | — oo, we get

v

o) — _F
“ K<)
() = m (satisfying optimality condition).

v

Note K = [Kj] = [e‘1€°"/] depends on € in our case.
Smaller the e, slower the algorithm (still exponentially fast).

v

v

The convergence to the solution (u(>), v(>)) is exponentially fast.



Contraction

Theorem 4.1. Let K € R}5™; then for (v,v') € (RT,)*

7(K)-1

Hibert projective metric on R . AK) 1,
dy(Kv,Kv') < A(K)dy(v,V'), where w Y "(Kg(“ K
- u 7(K) = max gt*pst.
V(u,w) € (RL,)',  dyfu,n) * logmax . B
’ 6 Ul

Figure 4.7 illustrates this theorem.

Images from the book “Computational Optimal Transport” by Cuturi and Peyré

——! /KR’

Figure 4.7: Left: the Hilbert metric dy is a distance over rays in cones (here positive vectors). Right:
visualization of the contraction induced by the iteration of a positive matrix K.

So, we see:

>
S04 Ty — g (P B
dH(U ,u )_dH(K\?(/)’ V(/71))
= dy (Kv, KilI=1))
< A(K) g (VI, VU7 1)
>

dy (VD 9Dy < A(K)dy (D, G0,
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min cjimii + €S
e ; i+ eS()

» The smaller ¢, the closer to the original optimal solution.

Image from the book “Computational Optimal Transport” by Cuturi and Peyré
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min ZCUWU—FFS)

weM(u,v)

Entropic regularization of OT makes OT problems effectively computable.
» Entropic regularization gives an approximate optimal solution to the OT problem.
» Applying the Sinkhorn algorithm, we get those approximate solutions in a very fast
way.
» In many practical applications, the approximate optimal solutions are good
enough.

There are many (practical) applications of OT.
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Part 2: Schrédinger’s problem

A reference:

» Christian Léonard: A survey of the Schrédinger problem and some of its
connections with optimal transport. https://arxiv.org/abs/1308.0215.
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The Schradinger problem: motivation

v

v

Suppose:
> Particles follow a given stochastic process,
e.g. the Brownian motion dWy = /edW; with diffusivity ¢, in R? with the law R..
> We observed

> 1 = the given initial configuration of given many (N, N > 1) independent particles at t = 0.
> v =~ the given final configuration of those particles at t = 1.

Note that the law of large numbers tells that with high probability the final
distribution should look like the heat flow of 4 at time 1.

Since N < oo still there is a chance for v to be different from it, but, with small
probability.

What if v is very different from the heat flow?

Schroédinger’s question: "Conditionally on this very rare event, what is the most
likely path (i.e. transport plan) of the whole system between the times t = 0 and
t=17"

How does it look like as N — oo"

It turned out that this is reduced to a minimization problem of the relative entropy.

22/25



The Schradinger problem

> Let

Re(x,y) = Cee~ e 1(x) where C. = Ce=9/2 and [,q Redy = 1.

> It gives the law of the distribution of Brownian motion Wy starting from the distribution 1,
at time 1 with the diffusion coefficient ¢, that is, dW = /edW;, where W; is the
standard Brownian motion.

» Relative entropy with respect to R.:
™

dxay.
Re XY

Ent(r| Re) := /Rd Rdwlog
X

> The relative entropy Ent(w| R.) compares a transport plan to the transport by the
Brownian motion.

» Schroédinger’s problem:

min _Ent(x| Rc).
m€N(p,v)
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Relation to the entropy regularized OT

> Recall
Re(x,y) := Cee™ e 1(x)  where C. = Ce=9/2 and [, Redy = 1.
i
El Re) = log — .
nt(r| Re) /]Rdx]Rdﬂ— 09 = dxdy
» Notice that for = € M(u, v),

eEnt(n| Re) = /]Rd » |X—y|2d7r+6/ dwlogwdxdy
x

RIXR!
d

—e/ plogpdx + € {—Ioge—logc} .
Rd 2

» Therefore,

min Ent(r| Rc) is equivalentto  min [/ |x — y|?dn(x, y) + ¢S(x)
meN(p,v) meN(p,v) [JrRIxRI

with the same optimal solution =¢.

» For fixed ¢, the results between these two are interchangeable.
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Ase— 0TF:

Theorem
Ase — 0T,

¢ min [Ent(r|R)] — min [/|xfy\2d7r}

reN(p.v) wen(u,v)

¢ — «* (in weak®)

Proof.
See e.g. Theorem 3.3. in Christian Léonard: From the Schrédinger problem to the
Monge-Kantorovich problem. https://doi.org/10.1016/j.jfa.2011.11.026. O

There are many more results and recent developments.
» A quantitative convergence of #¢ — 7* is available in certain cases.
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