
Lectures on Optimal Transport. May, 2022. KAIST

Young-Heon Kim (Department of Mathematics, University of British Columbia)

Lecture 1 The Monge-Kantorovich problem and duality.

Lecture 2 Wasserstein geometry of the space of probability measures.

Lecture 3 Entropic regularization of optimal transport. Today!
Lecture 4 Application of optimal transport to developmental processes.

Lecture 5 Multimarginal optimal transport. Wasserstein barycentre.

Seminar Optimal Brownian stopping with free target and the supercooled Stefan problem.

Lecture 6 Optimal martingale transport

Lecture 7 Optimal Brownian martingale transport
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Some references for the lectures

I Lecture 1, 2, and 3:
I Villani: Topics in Optimal Transport. Book
I Villani: Optimal Transport. Old and New. Book
I Cuturi & Payré: Computational Optimal Transport. Book

I Lecture 4:
I Schiebinger: https://broadinstitute.github.io/wot/tutorial/
I Kim, Lavenant, Schiebinger, Zhang: Towards a mathematical theory of trajectory

inference. https://arxiv.org/abs/2102.09204
I Lecture 5

I Cuturi & Payré: Computational Optimal Transport. Book
I Kim & Pass: Wasserstein Barycenters over Riemannian manifolds. Adv. in Math. 2017.

I Lecture 6
I Ghoussoub, Kim, & Lim: Structure of optimal martingale transport in general

dimensions. Ann. Prob. 2019.
I Lecture 7

I Ghoussoub, Kim, & Palmer: PDE Methods For Optimal Skorokhod Embeddings. Calc.
Var. 2019.

I Ghoussoub, Kim, & Palmer: A solution to the Monge transport problem for Brownian
martingales. Ann. Prob. 2021.

I I. Kim & Y. Kim.The Stefan problem and free targets of optimal Brownian martingale
transport. Preprint. 2021
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I Computation of Optimal Transport: Entropic regularization
I Schrödinger problem

I Entropy regularized OT has theoretical implications.
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Part 1. Entropic regularization of optimal transport
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Computation of Optimal Transport

Find a transport plan π that solves

Minimize
∑m

i=1
∑n

j=1 cijπij
subject to

∑n
j=1 πij = µi∑m
i=1 πij = νj

πij ≥ 0 for all i and j .

I Simpler notation:

min
π∈Π(µ,ν)

∑
i,j

cijπij

This is a linear programming problem, but, it is still costly to solve if m, n are large.

I the dimension for the decision variable π is mn.
I the number of constraints is mn + m + n.
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Entropic regularization

[Marco Cuturi 2013]

Solve for small ε > 0, min
π∈Π(µ,ν)

∑
i,j

cijπij + εS(π)


I Here

S(π) =
∑
i,j

[πij logπij − πij ]

with the convention that 0 log 0 = 0.

I x ∈ [0,∞] 7→ x ln x − x is strictly convex.
I the function S(π)] is strictly convex, and

so is π 7→
∑

ij

cijπij + εS(π).

I min
π∈Π(µ,ν)

∑
ij

cijπij + εS(π)

 has unique optimal solution πε.

I Finding the optimal solution πε is (relatively) easy. In fact, much faster!
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min
π∈Π(µ,ν)

∑
ij

cijπij + εS(π)


I The smaller ε, the closer to the original optimal solution.

Image from the book “Computational Optimal Transport” by Cuturi and Peyré
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Convergence as ε → 0+

Theorem
As ε→ 0+,

min
π∈Π(µ,ν)

∑
i,j

cijπij + εS(π)

 −→ min
π∈Π(µ,ν)

∑
i,j

cijπij


πε −→ π∗ ( in weak*)

where π∗ is the optimal solution of the original optimal transport problem.

Proof.
See e.g. Theorem 2.7., Carlier et al., SIAM J. Math. Anal. 49 (2017), no. 2,
1385–1418. MR 3635459.
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Duality for entropy regularized OT

I

Minimize
∑

ij cijπij + εS(π)

subject to
∑n

j=1 πij = µi∑m
i=1 πij = νj

πij ≥ 0

is equivalent to
I

min
π≥0

max
φ,ψ

{ m∑
ij

cijπij + εS(π)

+
∑

i

φi

µi −
n∑

j=1

πij

+
∑

j

ψi

[
νj −

m∑
i=1

πij

]}
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Duality for entropy regularized OT

min
π∈Π(µ,ν)

∑
ij

cijπij + εS(π)


= min
π≥0

max
φ,ψ

{ m∑
ij

cijπij + εS(π)

+
∑

i

φi

µi −
n∑

j=1

πij

+
∑

j

ψi

[
νj −

m∑
i=1

πij

]}
= max

φ,ψ
min
π≥0

[· · · · · · ] (justifiable)

= max
φ,ψ

{∑
i

φiµi +
∑

j

ψjνj

+ min
π≥0

[ m∑
ij

[cij − φi − ψj ]πij + εS(π)
]}

10 / 25



Lemma

min
π≥0

[ m∑
ij

[cij − φi − ψj ]πij + εS(π)
]

=− ε
∑

ij

e−
1
ε

[cij−φi−ψj ]

and minimum at π = e−
1
ε

[cij−φi−ψj ].

Proof.
I F (π) :=

∑m
ij [cij − φi − ψj ]πij + εS(π) is a strictly convex function.

I Using S(π) =
∑

ij [πij logπij − πij ], we get (∂πF )ij = cij − φi − ψj + ε logπij , and
∂πF (π)→ −∞ as πij → 0 for any (i, j).

I So, it has a minimum when ∂πF (π) = 0.
I And

∂πF = 0 iff π = e−
1
ε

[cij−φi−ψj ].

I Plug-in π = e−
1
ε

[cij−φi−ψj ] to F (π) and get

−ε
∑

ij

e−
1
ε

[cij−φi−ψj ].
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Non essential assumption for simplicity

From now on, for technical simplicity, let us assume that µi , νj > 0 for all i, j .
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Duality
Therefore we get

min
π∈Π(µ,ν)

∑
ij

cijπij + εS(π)

 Primal

= max
φ,ψ

∑
i

φiµi +
∑

j

ψjνj−ε
∑

ij

e−
1
ε

[cij−φi−ψj ]

 Dual.

I Weak duality: The primal objective values ≥ the dual objective values.
I For optimal primal solution πε and optimal dual solution (φε, ψε), we have∑

ij

cijπ
ε
ij + εS(πε)

=
∑

i

φεi µi +
∑

j

ψεj νj−ε
∑

ij

e−
1
ε

[cij−φε
i −ψ

ε
j ]

I Exercise: The previous lemma implies that

πεij = e−
1
ε

[cij−φε
i −ψ

ε
j ]
.

I So, the dual optimal solution gives the primal optimal solution explicitly!
I Notice that the optimal solution πεij is positive everywhere. This is in contrast to the

ordinary optimal transport where the optimal transport plan is concentrated along
a special set in the product space.
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Optimality condition for the dual

Dual max
φ,ψ

∑
i

φiµi +
∑

j

ψjνj−ε
∑

ij

e−
1
ε

[cij−φi−ψj ]

 .
I The objective function for dual is strictly concave due to the exponential terms.
I (φε, ψε) is a dual optimal solution if and only if

0 =
∂

∂φ,ψ

∣∣∣
(φ,ψ)=(φε,ψε)

∑
i

φiµi +
∑

j

ψjνj−ε
∑

ij

e−
1
ε

[cij−φi−ψj ]


if and only if ∑

j

e−
1
ε

[cij−φε
i −ψ

ε
j ]

= µi

∑
i

e−
1
ε

[cij−φε
i −ψ

ε
j ]

= νj .
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How to find optimal solution

We need to find some uεi := e−
1
ε
φε

i , vεj := e−
1
ε
ψε

j , so that

e−
1
ε

cij uεi vεj

satisfies ∑
j

e−
1
ε

cij uεi vεj = µi

∑
i

e−
1
ε

cij uεi vεj = νj .

which is

uεi =
µi∑

j e−
1
ε

cij vεj

vεj =
νj∑

i e−
1
ε

cij uεi
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Optimality condition

I Define the matrix K = [Kij ] = [e−
1
ε

cij ]. Rewrite

uεi =
µi∑

j e−
1
ε

cij vεj

vεj =
νj∑

i e−
1
ε

cij uεi

as

ui =
µi

[K~v ]i

vj =
νj

[K T~u]j

Simply,

~u =
~µ

K~v

~v =
~ν

K T~u
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[Sinkhorn algorithm, 1964]

I

~u(l+1) def
=

~µ

K~v (l)

~v (l+1) def
=

~ν

K T~u(l+1)

I Send (u(l), v (l)) to (u(l+1), v (l)) then to (u(l+1), v (l+1)).
I At the limit l →∞, we get

~u(∞) =
~µ

K~v (∞)

~v (∞) =
~ν

K T~u(∞)
(satisfying optimality condition).

I The convergence to the solution (u(∞), v (∞)) is exponentially fast.

I Note K = [Kij ] = [e−
1
ε

cij ] depends on ε in our case.
I Smaller the ε, slower the algorithm (still exponentially fast).
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Contraction

Hibert projective metric on Rn
+,∗.

Images from the book “Computational Optimal Transport” by Cuturi and Peyré

So, we see:
I

dH(~u(l+1), ~u(l)) = dH(
~µ

K~v (l)
,

~µ

K~v (l−1)
)

= dH(K~v (l),K~v (l−1))

≤ λ(K )dH(~v (l), ~v (l−1))

I

dH(~v (l+1), ~v (l)) ≤ λ(K )dH(~u(l+1), ~u(l)).
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min
π∈Π(µ,ν)

∑
i,j

cijπij + εS(π)


I The smaller ε, the closer to the original optimal solution.

Image from the book “Computational Optimal Transport” by Cuturi and Peyré
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min
π∈Π(µ,ν)

∑
i,j

cijπij + εS(π)



Entropic regularization of OT makes OT problems effectively computable.
I Entropic regularization gives an approximate optimal solution to the OT problem.
I Applying the Sinkhorn algorithm, we get those approximate solutions in a very fast

way.
I In many practical applications, the approximate optimal solutions are good

enough.

There are many (practical) applications of OT.
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Part 2: Schrödinger’s problem

A reference:
I Christian Léonard: A survey of the Schrödinger problem and some of its

connections with optimal transport. https://arxiv.org/abs/1308.0215.

21 / 25



The Schrödinger problem: motivation

I Suppose:
I Particles follow a given stochastic process,

e.g. the Brownian motion dW ε
t =

√
εdWt with diffusivity ε, in Rd with the law Rε.

I We observed
I µ ≈ the given initial configuration of given many (N, N � 1) independent particles at t = 0.
I ν ≈ the given final configuration of those particles at t = 1.

I Note that the law of large numbers tells that with high probability the final
distribution should look like the heat flow of µ at time 1.

I Since N <∞ still there is a chance for ν to be different from it, but, with small
probability.

I What if ν is very different from the heat flow?

I Schrödinger’s question: "Conditionally on this very rare event, what is the most
likely path (i.e. transport plan) of the whole system between the times t = 0 and
t = 1?"

I How does it look like as N →∞"
I It turned out that this is reduced to a minimization problem of the relative entropy.
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The Schrödinger problem

I Let

Rε(x , y) := Cεe−
1
ε
|x−y|2µ(x) where Cε = Cε−d/2 and

∫
Rd Rεdy = 1.

I It gives the law of the distribution of Brownian motion W ε
t starting from the distribution µ,

at time 1 with the diffusion coefficient ε, that is, dW ε
t =

√
εdWt , where Wt is the

standard Brownian motion.

I Relative entropy with respect to Rε:

Ent(π
∣∣ Rε) :=

∫
Rd×Rd

π log
π

Rε
dxdy .

I The relative entropy Ent(π
∣∣ Rε) compares a transport plan to the transport by the

Brownian motion.

I Schrödinger’s problem:

min
π∈Π(µ,ν)

Ent(π
∣∣ Rε).
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Relation to the entropy regularized OT

I Recall

Rε(x , y) := Cεe−
1
ε
|x−y|2µ(x) where Cε = Cε−d/2 and

∫
Rd Rεdy = 1.

Ent(π
∣∣ Rε) :=

∫
Rd×Rd

π log
π

Rε
dxdy .

I Notice that for π ∈ Π(µ, ν),

εEnt(π
∣∣ Rε) =

∫
Rd×Rd

|x − y |2dπ + ε

∫
Rd×Rd

π logπ dxdy

− ε
∫

Rd
µ logµdx + ε

[
d
2

log ε− log C
]
.

I Therefore,

min
π∈Π(µ,ν)

Ent(π
∣∣ Rε) is equivalent to min

π∈Π(µ,ν)

[∫
Rd×Rd

|x − y |2dπ(x , y) + εS(π)

]
with the same optimal solution πε.

I For fixed ε, the results between these two are interchangeable.
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As ε → 0+:

Theorem
As ε→ 0+,

ε min
π∈Π(µ,ν)

[Ent(π | Rε)] −→ min
π∈Π(µ,ν)

[∫
|x − y |2dπ

]
πε −→ π∗ ( in weak*)

Proof.
See e.g. Theorem 3.3. in Christian Léonard: From the Schrödinger problem to the
Monge-Kantorovich problem. https://doi.org/10.1016/j.jfa.2011.11.026.

There are many more results and recent developments.
I A quantitative convergence of πε → π∗ is available in certain cases.
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